首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycystic kidney disease (PKD) is the most common genetic cause for end-stage renal failure. Numerous fluid-filled cysts develop in the parenchyma of the kidney. They compromise kidney function with increasing number and size of the cysts until renal failure is inevitable. The cysts are epithelial in origin but cysts develop in different nephron segments depending on the type of the PKD. Animal models with PKD have been used for several decades to unravel the molecular mechanisms of cystogenesis. Initially, research was dependent on the morphological analysis of spontaneously emerging cystic phenotypes. Nowadays, in addition to theses models transgenic and knock-out models targeting PKD genes are also available. The localization of “cystoproteins” in the cilia of the tubulus epithelia and the involvement of cilia-dependent pathways in cystogenesis was shown only with the help of these animal models. This article gives an overview on the currently available murine models presenting with PKD.  相似文献   

2.
The polycystic kidney diseases (PKDs) are a group of genetic disorders causing significant renal failure and death in children and adults. There are no effective treatments. Two childhood forms, autosomal recessive PKD (ARPKD) and nephronophthisis (NPH), are characterized by collecting-duct cysts. We used animal models orthologous to the human disorders to test whether a vasopressin V2 receptor (VPV2R) antagonist, OPC31260, would be effective against early or established disease. Adenosine-3',5'-cyclic monophosphate (cAMP) has a major role in cystogenesis, and the VPV2R is the major cAMP agonist in the collecting duct. OPC31260 administration lowered renal cAMP, inhibited disease development and either halted progression or caused regression of established disease. These results indicate that OPC31260 may be an effective treatment for these disorders and that clinical trials should be considered.  相似文献   

3.
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous, with at least three chromosomal loci (PKD1, PKD2, and PKD3) that account for the disease. Mutations in the PKD2 gene, on the long arm of chromosome 4, are expected to be responsible for approximately 15% of cases of ADPKD. Although ADPKD is a systemic disease, it shows a focal expression, because <1% of nephrons become cystic. A feasible explanation for the focal nature of events in PKD1, proposed on the basis of the two-hit theory, suggests that cystogenesis results from the inactivation of the normal copy of the PKD1 gene by a second somatic mutation. The aim of this study is to demonstrate that somatic mutations are present in renal cysts from a PKD2 kidney. We have studied 30 renal cysts from a patient with PKD2 in which the germline mutation was shown to be a deletion that encompassed most of the disease gene. Loss-of-heterozygosity (LOH) studies showed loss of the wild-type allele in 10% of cysts. Screening of six exons of the gene by SSCP detected eight different somatic mutations, all of them expected to produce truncated proteins. Overall, >/=37% of the cysts studied presented somatic mutations. No LOH for the PKD1 gene or locus D3S1478 were observed in those cysts, which demonstrates that somatic alterations are specific. We have identified second-hit mutations in human PKD2 cysts, which suggests that this mechanism could be a crucial event in the development of cystogenesis in human ADPKD-type 2.  相似文献   

4.
5.
Polycystic kidney disease (PKD) is a common human genetic illness. It is characterized by the formation of multiple kidney cysts that are thought to result from over-proliferation of epithelial cells. Zebrafish larvae can also develop kidney cysts. In an insertional mutagenesis screen in zebrafish, we identified 12 genes that can cause cysts in the glomerular-tubular region when mutated and we cloned 10 of these genes. Two of these genes, vhnf1 (tcf2) and pkd2, are already associated with human cystic kidney diseases. Recently, defects in primary cilia have been linked to PKD. Strikingly, three out of the 10 genes cloned in this screen are homologues of Chlamydomonas genes that encode components of intraflagellar transport (IFT) particles involved in cilia formation. Mutation in a fourth blocks ciliary assembly by an unknown mechanism. These results provide compelling support for the connection between cilia and cystogenesis. Our results also suggest that lesions in genes involved in cilia formation and function are the predominant cause of cystic kidney disease, and that the genes identified here are excellent candidates for novel human PKD genes.  相似文献   

6.
Polycystic kidney diseases (PKD) are characterized by excessive proliferation of renal tubular epithelial cells, development of fluid-filled cysts, and progressive renal insufficiency. cAMP inhibits proliferation of normal renal tubular epithelial cells but stimulates proliferation of renal tubular epithelial cells derived from patients with PKD. Madin-Darby canine kidney (MDCK) epithelial cells, which are widely used as an in vitro model of cystogenesis, also proliferate in response to cAMP. Intracellular cAMP levels are tightly regulated by phosphodiesterases (PDE). Isoform-specific PDE inhibitors have been developed as therapeutic agents to regulate signaling pathways directed by cAMP. In other renal cell types, we have previously demonstrated that cAMP is hydrolyzed by PDE3 and PDE4, but only PDE3 inhibitors suppress proliferation by inhibiting Raf-1 activity (Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Am J Physiol Renal Physiol 287:F940-F953, 2004.) A potential role for PDE isoform(s) in cAMP-mediated proliferation of MDCK cells has not previously been established. Similar to what we have previously found in several other renal cell types, cAMP hydrolysis in MDCK cells is directed primarily by PDE4 (85% of total activity) and PDE3 (15% of total activity). PDE4 inhibitors are more effective than PDE3 inhibitors in increasing intracellular cAMP levels in MDCK cells. However, only PDE3 inhibitors, and not PDE4 inhibitors, stimulate mitogenesis of MDCK cells. PDE3 but not PDE4 inhibitors activate B-Raf but not Raf-1, as assessed by an in vitro kinase assay. PDE3 but not PDE4 inhibitors activate the ERK pathway and activate cyclins D and E, as assessed by histone H1 kinase assay. We conclude that mitogenesis of MDCK cells is regulated by a functionally compartmentalized intracellular cAMP pool directed by PDE3. Pharmacologic agents that stimulate PDE3 activity may provide the basis for new therapies directed toward reducing cystogenesis in patients with PKD.  相似文献   

7.
Polycystic kidney diseases (PKDs) comprise a large group of genetic disorders characterized by formation of cysts in the kidneys and other organs, ultimately leading to end-stage renal disease. Although PKDs can be caused by mutations in different genes, they converge on a set of common molecular mechanisms involved in cystogenesis and ciliary dysfunction, and can be qualified as ciliopathies. Recent advances in understanding the mechanisms regulating disease progression have led to the development of new therapies that are being tested in both preclinical and clinical trials. In this article, we briefly review a network of molecular pathways of cystogenesis that are regulated by ciliary functions. We discuss the mTOR pathway in depth, highlighting recent progress in understanding its role in PKD and the current results of clinical trials.  相似文献   

8.
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by the formation of multiple fluid-filled cysts in bilateral kidneys. Although mutations in polycystic kidney disease 1 (PKD1) are predominantly responsible for ADPKD, the focal and sporadic property of individual cystogenesis suggests another molecular mechanism such as epigenetic alterations. To determine the epigenomic alterations in ADPKD and their functional relevance, ADPKD and non-ADPKD individuals were analyzed by unbiased methylation profiling genome-wide and compared with their expression data. Intriguingly, PKD1 and other genes related to ion transport and cell adhesion were hypermethylated in gene-body regions, and their expressions were downregulated in ADPKD, implicating epigenetic silencing as the key mechanism underlying cystogenesis. Especially, in patients with ADPKD, PKD1 was hypermethylated in gene-body region and it was associated with recruitment of methyl-CpG-binding domain 2 proteins. Moreover, treatment with DNA methylation inhibitors retarded cyst formation of Madin-Darby Canine Kidney cells, accompanied with the upregulation of Pkd1 expression. These results are consistent with previous studies that knock-down of PKD1 was sufficient for cystogenesis. Therefore, our results reveal a critical role for hypermethylation of PKD1 and cystogenesis-related regulatory genes in cyst development, suggesting epigenetic therapy as a potential treatment for ADPKD.  相似文献   

9.
Polycystic kidney disease is a common genetic disorder in which fluid-filled cysts displace normal renal tubules. Here we focus on autosomal dominant polycystic kidney disease, which is attributable to mutations in the PKD1 and PKD2 genes and which is characterized by perturbations of renal epithelial cell growth control, fluid transport, and morphogenesis. The mechanisms that connect the underlying genetic defects to disease pathogenesis are poorly understood, but their exploration is shedding new light on interesting cell biological processes and suggesting novel therapeutic targets.  相似文献   

10.
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease, affecting millions of people worldwide. The progressive growth of cysts in kidneys eventually leads to renal failure in 50 % of patients, and there is currently no effective treatment. Various murine models have been studied to elucidate the disease mechanisms, and much information has been acquired. However, the course of the disease cannot be fully recapitulated using these models. The pig is a suitable model for biomedical research, and pig PKD2 has high similarity to the human ortholog at the molecular level. Here, a mini-pig PKD2 transgenic model was generated, driven by a ubiquitous cytomegalovirus enhancer/promoter. Using somatic cell nuclear transfer, four transgenic pigs with approximately 10 insertion events each were generated. Quantitative real-time PCR and western blotting showed that PKD2 was more highly expressed in transgenic pigs than in wild-type counterparts. Because of the chronic nature of ADPKD, blood urea nitrogen and serum creatinine levels were continuously measured to assess the pig kidney function. The transgenic pigs continue to show no significant alteration in kidney function; it is estimated that 1–2 more years may be required for manifestation of renal cystogenesis in these pigs.  相似文献   

11.
Summary Polycystic kidney disease (PKD) is characterized by multiple renal cysts that are lined by epithelium and filled with fluid. PKD may result from one of a number of factors, either inherited or environmental. In this study, we have compared two mouse models in which PKD results from a genetic cause. In the C57BL/6J-cpk model, the mutated gene is unknown. In the other model, an SV40 large T antigen transgene causes renal cysts. We examined cultured cells from the kidneys of these mouse models, comparing growth characteristics. Although several features of PKD lead one to expect that the epithelial cells lining the cysts would have an increased rate of proliferation in culture, we found that they did not. The implications of these findings are discussed.  相似文献   

12.
13.
Polycystic liver disease (PLD) is a heterogeneous genetic condition. PKD1 and PKD2 germline mutations are found in patients with autosomal dominant polycystic kidney disease (ADPKD). Autosomal dominant polycystic liver disease (ADPLD) is associated with germline mutations in PRKCSH, SEC63, LRP5, and recently ALG8 and SEC61. GANAB mutations are found in both patient groups. Loss of heterozygosity of PLD-genes in cyst epithelium contributes to the development of hepatic cysts. A genetic interaction network is implied in hepatic cystogenesis that connects the endoplasmic glycoprotein control mechanisms and polycystin expression and localization. Wnt signalling could be the major downstream signalling pathway that results in hepatic cyst growth. PLD in ADPLD and ADPKD probably results from changes in one common final pathway that initiates cyst growth. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

14.
15.
A relationship between cytotrophoblast differentiation (syncytialisation) and apoptosis is hypothesised to exist, but has not been clearly determined. To address this, we explored the effects of cAMP, an inducer of syncytialisation, on human choriocarcinoma cell differentiation and viability under three different culture conditions related to diverse survival status: no serum, 10% fetal calf serum or 10% charcoal-stripped fetal calf serum. 8-Br-cAMP increased BeWo cell viability in culture media without serum, but viability was decreased in a dose- and time-dependent manner when serum was present. The appearance of apoptotic nuclei fragments were only observed when BeWo cells were cultured in media containing serum combined with 8-Br-cAMP treatment. In addition, the ratio of FasL to Fas expression following treatment with 8-Br-cAMP increased by 20-fold in 10% charcoal-stripped fetal calf serum media and 65-fold 10% fetal calf serum media, and activation of caspase-3 also required media with serum. The markers of syncytialisation (syncytin 1 expression and human chorionic gonadotropin secretion) were induced significantly by 8-Br-cAMP, and were higher in 10% fetal calf serum media than in 10% charcoal-stripped fetal calf serum media, than in the absence of serum. Syncytia formation was stimulated by 8-Br-cAMP and this required serum in the media. We now show that factors contained within serum are necessary for cAMP-stimulated cytotrophoblast differentiation, that syncytialisation involves apoptotic events, and that a lack of serum based factors could switch the cellular program away from differentiation.  相似文献   

16.
The major form of autosomal dominant polycystic kidney disease (ADPKD) results from mutation of a gene (PKD1) of unknown function that is essential for the later stages of renal tubular differentiation. In this report, we describe a novel cell culture system for studying how PKD1 regulates this process. We show that expression of human PKD1 in MDCK cells slows their growth and protects them from programmed cell death. MDCK cells expressing PKD1 also spontaneously form branching tubules while control cells form simple cysts. Increased cell proliferation and apoptosis have been implicated in the pathogenesis of cystic diseases. Our study suggests that PKD1 may function to regulate both pathways, allowing cells to enter a differentiation pathway that results in tubule formation.  相似文献   

17.
Autosomal dominant polycystic kidney disease (ADPKD) is a leading cause of end-stage renal disease. The vasopressin V2 receptor (VPV2R) antagonist OPC31260 has been effective in two animal models of PKD with pathologies that are probably related. Here we show, in a mouse model of ADPKD (Pkd2(-/tm1Som)), a similar cellular phenotype and response to OPC31260 treatment, with reduction of renal cyclic AMP (cAMP) levels, prevention of renal enlargement, marked inhibition of cystogenesis and protection of renal function.  相似文献   

18.
19.
Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.  相似文献   

20.
Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号