首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oak seedlings (Quercus robur L.) were germinated in darkness for 3 weeks and then given continuous long wavelength far-red light (LFR; wavelengths longer than 700 nm). A control group of seedlings was kept in darkness. After 2 additional weeks the chlorophyll formation ability in red light was examined in the different seedlings. The stability of the protochlorophyll(ide) and chlorophyll(ide) forms to high intensity red irradiation was also measured. Oak seedlings grown in darkness accumulated protochlorophyll(ide) (6 μg per g fresh matter). Absorption spectra and fluorescence spectra indicated the presence of more protochlorophyll(ide)628–632 than protochlorophyllide650–657. The level of protochlorophyll(ide) was higher in leaves of plants cultivated in LFR light (13 μg per g fresh matter) than in leaves of dark grown plants. 12% of the protochlorophyll(ide) was esterified in both cases. The level of protochlorophyll(ide)628–632 in LFR grown oaks varied with the age of the leaves, being higher in the older (basal) leaves, but also in the very youngest (top-most) leaves. The ability of the leaves to form photostable chlorophyll in red light showed a similar age dependence, being low in rather young and in older leaves. A low ability to form photostable chlorophyll thus appears to be correlated with a high content of protochlorophyll(ide)628–632. Upon irradiation only the protochlorophyllide650–657 was transformed to chlorophyllide. After this phototransformation the chlorophyllide peak at 684 nm shifted to 671 nm within about 30 min in darkness. This shift took place without any accompanying change in photostability of the chlorophyll(ide). Upon irradiation with strong red light a similar shift took place within one minute. This indicates that the chlorophyllide after phototransformation was rather loosely bound to the photoreducing enzyme. The development towards photostable chlorophyll forms consists of three phases and is discussed.  相似文献   

2.
The relation between the different protochlorophyllide (PChlide) forms in isolated etioplast inner membranes was dependent on the concentration of sucrose and NADPH in the isolation media. Etioplasts were prepared from wheat ( Triticum aestivum L. cv. Starke II, Weibull) by differential centrifugation. The etioplasts were freed of envelope and stroma and the etioplast inner membranes were exposed to a concentration series of sucrose. Fluorescence emission spectra revealed a positive correlation between the emission ratio 657/633 nm and the sucrose concentration in which the membranes were suspended. Addition of NADPH prevented the degradation of 657 nm emission caused by low sucrose concentrations. PChlide already altered to PChide628–632 could not re-form PChlide650–657 after the addition of NADPH in darkness. Prolamellar bodies and prothylakoids were separated in a bottom-loaded sucrose density gradient in the presence of NADPH. The dominating PChlide-protein complex in the prolamellar bodies was PClide650–657. Only minor amounts of PChlide628–632 were found in these membranes. The prothylakoids had a higher content of PChlide628–632, relative to PChlide650–657, than the prolamellar bodies, as judged from absorption and fluorescence spectra. After phototransformation the fluorescence emission at 633 nm increased relative to the emission from phototransformed PChlide indicating an efficient energy transfer between PChlide628–632 and PChlide650–657 before irradiation.  相似文献   

3.
Etiochloroplasts isolated from dark-grown pine cotyledons fed with -aminolevulinic acid (ALA) contain, in addition to the chlorophyll forms, two protochlorophyllide complexes which emit fluorescence around 635 nm and 657 nm respectively (ALA-PChlideF635 and PChlideF657). By a combination of light flashes and periods of darkness, it is possible to phototransform PChlideF657 and thereafter, if NADPH is added to the system, to re-form this pigment-complex from the pool of ALA-PChlideF635 during the dark periods. The process of phototransformation followed by the re-formation of PChlideF657 in the presence of NADPH can be obtained in vitro five to six times consecutively. The role of NADPH in the formation of the PChlideF657 complex is discussed.
  相似文献   

4.
The pigment content and rates of primary photosynthetic reactions were determined in chloroplasts of 14-day-old pine (Pinus silvestris L.) seedlings grown in light and darkness. In addition, the functional activities were investigated in chloroplasts from dark-grown seedlings exposed to white, red ( = 670 nm), and red + far-red ( = 748 nm) light. Dark-grown seedlings were capable of performing the Hill reaction, noncyclic photophosphorylation, and phenazine methosulfate–supported photophosphorylation, although the reaction rates in chloroplasts from dark-grown plants were considerably lower than in preparations from light-grown plants. Light treatment of dark-grown seedlings rapidly activated the photoreduction of ferricyanide and photophosphorylation, while the additional accumulation of green pigments started only after a lag period of two hours. Preirradiation of dark-grown seedlings with red light stimulated the formation of pigments, especially chlorophyll b, as well as the functional activity of chloroplasts. When far-red light was applied after red-light exposure, the processes examined were inhibited. It is concluded that accumulation of the light-harvesting complex and functional activities of chloroplasts at the photosystem II level in pine seedlings are controlled by the phytochrome.  相似文献   

5.
Incubation of prolamellar bodies (PLB) in high-salt media leads to changes in PLB structure and properties of their protochlorophyllide oxidoreductase–protochlorophyllide (PORPChlide) complex. The paracrystalline organisation typical of PLB is disrupted and NADPH dissociates from photoconvertible PORPChlide, with absorption maxima at 640 and 650 nm (PORPChlide 640/650 ), and a non-photoconvertible form, with absorption maxima at 635 nm (PORPChlide 635 ), is formed. These effects are strongly dependent on the valence of the cation of the perturbing salt, indicating that they involve surface double layers effects. They are also influenced by the nature of the anion and by high concentrations of non-electrolytes, suggesting the involvement of surface hydration effects. The structural changes are largely, if not entirely, independent of the presence of excess NADPH. Changes to the PORPChlide complex, however, are strongly inhibited by excess NADPH suggesting that the two sets of changes may not be causally linked. As long as the disruption is not too great, the structural changes seen on incubation of PLB in high salt media lacking excess NADPH are reversed on removal of the high salt perturbation. This reversal is independent of the presence or absence of added NADPH. Reformation of photoconvertible PORPChlide, however, requires the presence of NADPH. The reformation of paracrystalline PLB in the absence of NADPH strongly indicates that preservation of PLB structure, in isolated PLB preparations at least, is independent of the presence or absence of PORPChlide 650 .  相似文献   

6.
Leaves treated with δ-aminoievulinic acid accumulate protochlorophyllide636 in large amounts. Due to a continuous conversion of protochlorophyllide636 (nonphototransformable) into protochlorophyllide650 (phototransformable) in weak red light, the photoreduction of protochlorophyllide to chlorophyllide can proceed for at least 20 minutes and results in a chlorophyllide content of the leaves three times higher than that in untreated leaves. The half time for this chlorophyllide accumulation is 55 seconds. A photodestruction of the pigments takes place at high light intensities or if the content of protochlorophyllide636 is high. The conversion of protochlorophyllide636 to chlorophyllide is dependent on the light intensity used for phototransformation of protochlorophyllide550 The conversion of PChlide646 was not limiting for chlorophyllide formation within the range of the light intensity used. The extrapolation of a double reciprocal plot of chlorophyllide formation, rate versus light intensity gives a maximal value of 8.7 μg chlorophyllide per g fresh weight and min. The conversion of protochlorophyllide363 to protochlorophyllide650 is believed to depend on the available sites of an apophotoenzyme.  相似文献   

7.
The relationship of phototransformable protochlorophyllide to photoinactive protochlorophyllide has been studied in primary leaves of 7- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Various levels of photoinactive protochlorophyllide, absorbing at 633 nm in vivo, were induced by administering δ-aminolevulinic acid to the leaves in darkness. Phototransformable protochlorophyllide, absorbing at 650 nm in vivo, was subsequently transformed to chlorophyllide by a light flash, and the regeneration of the photoactive pigment was followed by monitoring the absorbance increase at 650 nm in vivo. A small increase in the level of protochlorophyllide633 causes a marked increase in the extent of regeneration of protochlorphyllide650 following a flash. High levels of the inactive pigment species, however, retard the capacity to reform photoactive protochlorophyllide. A nonstoichiometric and kinetically complex decrease in absorbance at 633 nm in vivo accompanied the absorbance increase at 650 nm. The half-time for protochlorophyllide650 regeneration in control leaves was found to be three times longer than the half-time for conversion of chlorophyllide678 to chlorophyllide683 at 22 C. The results are consistent with the hypothesis that protochlorophyllide633 is a direct precursor of protochlorophyllide650 and that the protein moiety of the protochlorophyllide holochrome acts as a “photoenzyme” in the conversion of protochlorophylide to chlorophyllide.  相似文献   

8.
The localization of NADPH-protochlorophyllide oxidoreductase (PChlide reductase, EC 1.6.99.–) in dark-grown and in irradiated dark-grown leaves of wheat ( Triticum aestivum L. cv. Walde) was investigated by subjecting thin sections of Lowicryl K4M-embedded leaf pieces to a monospecific antiserum raised against PChlide reductase followed by protein A-gold. A well-preserved antigenicity of the tissue was achieved by polymerizing the resin under UV-light at low temperature. In dark-grown leaves PChlide reductase was found in prolamellar bodies only. In leaves irradiated for 30 min with white light PChlide reductase was found not only in the transformed prolamellar bodies but also to a large extent in connection with the prothylakoids. The localization of PChlide reductase is discussed in relation to fluorescence emission spectra of the dark-grown and greening leaves. We conclude that the light-dependent transformation of protochlorophyllide to chlorophyllide initiates a translocation of PChlide reductase from the prolamellar bodies to the prothylakoids.  相似文献   

9.
Absorbancy changes in dark-grown, excised wheal leaves fed with δ-aminolevulinic acid are measured in vivo. The treatment with σ-aminolevulinic acid caused accumulation of protochlorophyllide, absorbing at 636 nm. After flashlight this form is found to convert in darkness to protochlorophyllide, absorbing at 650 nm. The conversion starts instantly after the leaves have been exposed to the flashlight, and the pre-existent pool of protocholorophyllidc absorbing at 650 nm will become emptied. The conversion is completed after 15–20 minutes, when a new pool of protochlorophyllide has been filled up. This new pool is transformed to chlorophyllide by a second flash and the sequence is repeated. The conversion may be composed of two reactions, a conclusion which can be drawn from the behaviour at different temperatures. One of these reactions is fairly temperature independent while the other is temperature dependent. The action of the protochlorophyllide holochrome is discussed.  相似文献   

10.
11.
12.
Two forms of protochlorophyllide are found in dark-grown bean (Phaseolus vulgaris, var. Black Velentine) leaves, one (protochlorophyllide650) which is directly photoconvertible to chlorophyllide and another (protochlorophyllide632) which is not. Dark-grown leaves placed in solutions of δ-aminolevulinic acid accumulate protochlorophyllide632. Protochlorophyllide650 and protochlorophyllide632 can be partially separated on sucrose density gradients. A nitrogen atmosphere blocks chlorophyll synthesis in light or the regeneration of protochlorophyllide650 in the dark, even in the presence of excess δ-aminolevulinic acid, except when a stockpile of protochlorophyllide632 is present in the leaf. Under the latter conditions chlorophyll synthesis or protochlorophyllide650 regeneration is accompanied by a decrease in protochlorophyllide632. These experiments suggest that protochlorophyllide632 may be converted to protochlorophyllide650.  相似文献   

13.
The rate of phytylation and the rate of the in vivo Chl682→ Chl672 nm shift of the newly formed chlorophyllide were examined after a brief illumination of dark-grown Phaseolus vulgaris leaves at different stages of development. Both processes were found to be age dependent but independent of one another. The Chl682→ Chl672 nm shift process precedes that of phytylation. In addition, there is a linear relationship between tissue age and the delay time between the two processes, indicating that they are not identical, although they are almost parallel. There was no evidence obtained of a far-red light effect on any of the two processes. Experiments done with freeze-dried etiolated plant tissue showed the presence of PChl650 and PChl637 forms, which by illumination form Chl678. If a trace of water is added to the etiolated freeze-dried tissue before illumination the PChl650 and PChl637 are transformed to the non-phototransformable PCh650 form. Moreover, no shift of the Chl678 form is observed, unless a trace of water is added to the freeze-dried tissue. These results are explained by a mechanism of structural rearrangement in the chloroplast after protochlorophyllide phototransformation leading into monomeric chlorophyllide units, which can then be phytylized. This explanation is substantiated by the results of experiments done with isolated protochlorophyllide-holochrome: addition of 4M urea before or after illumination to the protochlorophyllide-holochrome solution showed a PChl636→ PChl629 and Chl676→ Chl668 shift respectively.  相似文献   

14.
The decreasing absorbances in vivo of protochlorophyll(ide) at 635 and 650 nm bear the same relationships to one another during photoconversion to chlorophyll(ide) a in the leaves of dark-grown barley seedlings, regardless of whether the actinic light is absorbed primarily at 630, 640 or 671 nm. Accordingly, the absorption bands at 635–637 and 650 nm of photoconvertible protochlorophyll(ide) are attributed to a single species of membrane-bound protochlorophyll(ide) molecule or, alternatively, to two species which are in dynamic equilibrium.  相似文献   

15.
Primary leaf development of Sorghum bicolor is a phytochrome-mediated response. Primary leaves are not produced in Sorghum seedlings even after 10 d of germination if grown in darkness. However, 5 min irradiation with white light or red light given to 5 d etiolated seedlings resulted in the formation of etiolated leaves. This effect of red light was reversed by far-red light. When calcium (3-5 mM) was added exogenously, complete leaf formation was obtained in darkness; however, the kinetics of the response was slower than that seen with light irradiation. This effect was also obtained with potassium ions but magnesium ions had no effect. Light- and calcium-mediated leaf development could be arrested at the stage of leaf emergence or leaf expansion by the addition of inhibitors of G-proteins or by calcium channel blockers suggesting a role of G-proteins and calcium in phytochrome signal transduction during primary leaf development.Key words: Leaf formation, G-proteins, calcium, potassium, Sorghum bicolor.   相似文献   

16.
Sour orange (Citrus aurantium L.) seedlings grown for six months under covers transmitting light of different spectral composition, were compared with others grown under a white cover (control) and outside in full daylight. The intensity of transmitted light was equalized under all covers and attained only 20% of full daylight. Seedlings grown in daylight were shorter, had more internodes, smaller leaves, less chlorophyll and more ascorbic acid than the others. Blue + far-red covers (no transmission between 560–700 nm) enhanced seedling length, the protein and chlorophyll content and peroxidase activity of leaves. When also the wave-range above 700 nm was cut out (blue) seedlings were the shortest, and leaves had very high protein and chlorophyll content, but much less ascorbic acid and lower peroxidase activity. Red + far-red covers (no transmission below 500 nm) enhanced seedling length more than blue + far-red; leaves contained as much protein as control, but had relatively high chlorophyll and peroxidase activity. Ascorbic acid was as low as in blue light.  相似文献   

17.
Oak Seedlings Grown in Different Light Qualities   总被引:2,自引:0,他引:2  
Seedlings of oak (Quercus robur) were germinated in darkness for 3 weeks and then given continuous light or short pulses of light (5–8 min every day). The morphological development was followed during 25 days. In continuous white, blue, and red light the stem growth terminated after about 10 days by formation of a resting bud. At that time the seedlings were about 100 mm high. In con tinuous long wavelength farred light (wavelength longer than 700 nm) the stem growth including leaf formation was continuous without the formation of resting buds, and the stem length was about 270 mm after 25 days. The number of nodes developed became twice that of the seedlings grown in while light. The leaves became well developed in all light colours, but leaf areas were largest in plants cultivated in white light. Compared to dark grown seedlings the mean area per leaf was increased about five times in continuous long wavelength far red light. A supplement with short (5 min) pulses of red light each day increased the leaf area up to 20 times. The stem elongation showed a high energy reaction response, i.e. the stem length increased only in continuous long wavelength far-red light but was not influenced by short pulses of red light or far-red light. The leaf expansion, however, was increased by short pulses of red light with a partial reversion of the effect by a subsequent pulse of far-red light. The fraction of the plant covered with periderm was higher in plants given continuous light. In respect to periderm inhibition continuous long wavelength far red light was the most effective. The transfer of seedlings from darkness to continuous white light gave anthocyanin formation in the stem 10–20 mm below the apex. This formation took place in the cortex and was evident in plants grown in darkness or under short pulses of light. Plants grown in continuous red, blue or long wavelength Far red light showed only traces of anthocyanin.  相似文献   

18.
Irradiation of excised stem segments from de-etiolated seedlings of Cuscuta planiflora for 24 h with mixtures of red and far-red light with red to far-red ratios between 0.02 to 1.0 enhanced coiling and formation of prehaustoria. Maximum number of prehaustoria were recorded when red:far-red was near 0.1. Coiling and prehaustoria were observed whenever estimated in vivo Pfr/Ptotal at photoequilibrium was between 0.06 and 0.67. Irradiation of excised stem segments from white light grown seedlings with 12 h blue light also promoted coiling and prehaustoria formation after another 38 h in darkness. Coiling and prehaustoria were not observed in segments pulsed with 10 min red light at the end of 12 h in blue light. Coiling and prehaustoria were observed after photoreversible end-of-day far-red/red/far-red pulses but not after red/far-red/red pulses. A far-red pulse may not reverse inhibition by end-of-day red pulse when far-red is given more than 12 h after the red pulse.  相似文献   

19.
Starch biosynthesis and degradation was studied in seedlings and mature plants of Euphorbia heterophylla L. and E. myrsinites L. Mature embryos, which lack starch grains in the non-articulated laticifers, develop into seedlings that accumulate starch rapidly when grown either in the light or the dark. Starch accumulation in laticifers of dark-grown seedlings was ca. 47 and 43% of total starch in light-grown controls in E. heterophylla and E. myrsinites, respectively. In light-grown seedlings, starch was present in laticifers as well as parenchyma of stems and leaves, whereas in dark-grown seedlings starch synthesis was almost exclusively limited to laticifers. In 7-month-old plants placed into total darkness, the starch in chyma was depleted within 6 d, whereas starch in laticifers was not mobilized. The starch content of latex in plants during development of floral primordia, flowering, and subsequent fruit formation remained rather constant. The results indicate that laticifers in seedlings divert embryonal storage reserves to synthesize starch even under stress conditions (darkness) in contrast to other cells, and that starch accumulated in laticifers does not serve as a metabolic reserve. The laticifer in Euphorbia functions in the accumulation and storage of secondary metabolites yet retains the capacity to produce, but not utilize starch, a primary metabolite.  相似文献   

20.
When dark-grown mustard seedlings are irradiated with far-red light the level of phenylalanine ammonia-lyase (EC 4.3.1.5) activity increases. After 2H2 O treatment phynlalanine amonia-lyase from seedlings irradiated with far-red light is density-labelled to a lesser extent than enzyme from dark-grown tissue. Theoretical arguments are advanced and data presented which show that this result cannot be explained in terms of an increase in de novo synthesis of phenylalanine ammonia-lyase and that the increase most likely involves activation of existing enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号