首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transglucosylation reaction of buckwheat α-glucosidase was examined under the coexistence of 2-deoxy-d-glucose and maltose. As the transglucosylation products, two kinds of new disaccharide were chromatographically isolated in a crystalline form (hemihydrate). It was confirmed that these disaccharides were 3-O-α-d-glucopyranosyl-2-deoxy-d-glucose ([α]d + 132°, mp 130 ~ 132°C, mp of ±-heptaacetate 151 ~ 152°C) and 4-O-±-d-glucopyranosyl-2-deoxy-d-glucose ([±]d + 136°, mp 168 ~ 170°C), respectively. The principal product formed in the enzyme reaction was 3-O-±-d-glucopyranosyl-2-deoxy-d-glucose.  相似文献   

2.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

3.
An aminopeptidase was purified from Aspergillus sojae X–816. The molecular weight of the enzyme was estimated to be 220,000. The isoelectric point was at pH 5.3. The optimum pH for l-leucylglycylglycine was 7.5. The enzyme was stable up to 37°C against temperature treatment for 15 min. Some chelating agents inhibited the enzyme activity. The Km value for l-leucylglycylglycine at pH 7.5 and 37°C was 45 mm. The Km value for l-leucyl-β-naphthylamide at pH 7.0 and 37°C was 2.2 mm.  相似文献   

4.
A modified procedure for synthesis of sucrose was carried out by using purified crystalline 1,3,4,6-tetra-O-benzoyl-d-fructofuranose in place of 1,3,4,6-tetra-O-acetyl-d-fructofuranose; namely, reaction of 1,2-anhydro-3,4,6-tri-O-acetyl-α-d-glucopyranose with tetrabenzoyl-d-fructose at 110~118°C for 3 hr followed by deacylation, and by chromatographic separation of the deacylated product afforded crude sucrose. Acetylation of the synthetic product gave octaacetate sucrose in the yield of 5.0%.  相似文献   

5.
d-Glucose-isomerizing enzyme from Escherichia intermedia HN-500, which converts d-glucose to d-fructose in the presence of arsenate, was purified by treating with manganous sulfate, rivanol, and DEAE-Sephadex column chromatography. About 180-fold purified enzyme preparation was obtained by the above procedures. The purified preparation was free from the activities of d-glucose-, d-galactose-, glucose-6-phosphate-, mannitol-, and sorbitol-dehydrogenases and was homogeneous on polyacrylamide gel in zone electrophoresis. Optima of pH and temperature for the enzyme were found to be pH 7.0 and 50°C, respectively. The enzyme was completely inactivated by heating at 60°C for ten minutes and stable in the pH range of 7.0~9.0 at 30°C. Activation energy for the isomerizing enzyme was calculated to be 15,300 calories per mole degree from Arrhenius' equation. Either in the absence or presecne of arsenate, d-mannose, d-xylose, d-mannitol and d-sorbitol could not be isomerized by the purified enzyme at all, but the present enzyme isomerized exclusively glucose-6-phosphate and fructose-6-phosphate in the absence of arsenate.  相似文献   

6.
An inducible tryptophanase was crystallized from the cell extract of Proteus rettgeri grown in a medium containing l-tryptophan. The purification procedure included ammonium sulfate fractionation, heat treatment, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystals were obtained from solutions of the purified enzyme by the addition of ammonium sulfate.

The crystalline enzyme preparation was homogeneous by the criteria of ultracentrifugation and zone electrophoresis. The molecular weight was determined to be approximately 210,000.

The crystalline enzyme catalyzed the degradation of l-tryptophan into indole, pyruvate and ammonia in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from 5-hydroxy-l-tryptophan, 5-methyl-l-tryptophan, S-methyl-l-cysteine and l- cysteine. l-, d-Alanine, l-phenylalanine and indole inhibited pyruvate formation from these substrates.  相似文献   

7.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

8.
A new intracellular peptidase, which we call “d-peptidase S,” was purified from Nocardia orientalis IFO 12806 (ISP 5040). The purified enzyme was homogeneous on disc gel electrophoresis. The molecular weight and the isoelectric point were estimated to be 52,000 and 4.9, respectively. The optimum pH for the hydrolysis of d-leucyl-d-leucine was 8.0 to 8.1, and the optimum temperature was 36°C. The purified enzyme usually hydrolyzed the peptide bonds preceding the hydrophobic D-amino acids of dipeptides. Tri- and tetra-peptides extending to the amino terminus of such peptides were also hydrolyzed. Therefore, the enzyme is a carboxylpeptidase-like peptidase specific to d-amino acid peptides. The Km values for d-leucyl-d-leucine and l-leucyl-d-leucine were 0.21 × 10-3 and 0.44 × 10-3 m respectively. The activity was inhibited by several sulfhydryl reagents and two chelators, 8-hydroxyquinoline and o-phenanthroline.  相似文献   

9.
l-Arginase (l-arginine amidinohydrolase, EC 3.5.3.1) was purified in a crystalline form from cells of Bacillus subtilis KY 3281 with an overall yield of 23.2%. The crystalline enzyme had a specific activity of 858 i.u./mg-protein and was ultracentrifugally homogeneous. It was estimated to have a molecular weight of 115,000±5000 by the method of Yphantis.

The enzyme highly specific for l-arginine showed the maximum activity at pH 10 with Mn2+ ion. The Km for l-arginine was 1.35 × 10?2 m The activity was competitively inhibited by l-lysine, but not by l-ornithine and increased by the addition of Mn2+ or Co2+ ions. The stable pH and temperature ranges became wider in the presence of Mn2+ ion and l-threonine.  相似文献   

10.
An N-carbamyl-L-amino acid amidohydrolase was purified from cells of Escherichia coli in which the gene for N-carbamyl-L-amino acid amidohydrolase of Pseudomonas sp. strain NS671 was expressed. The purified enzyme was homogeneous by the criterion of SDS–polyacrvlamide gel electrophoresis. The results of gel filtration chromatography and SDS–polyacrylamide gel electrophoresis suggested that the enzyme was a dimeric protein with 45-kDa identical subunits. The enzyme required Mn2+ ion (above 1 mM) for the activity. The optimal pH and temperature were 7.5 and around 40°C, respectively, with N-carbamyl-L-methionine as the substrate. The enzyme activity was inhibited by ATP and was iost completely with p-chloromercuribenzoate (1 mM). The enzyme was strictly L-specific and showed a broad substrate specificity for N-carbamyl-L-α-amino acids.  相似文献   

11.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   

12.
Thermotolerant acetic acid bacteria belonging to the genus Gluconobacter were isolated from various kinds of fruits and flowers from Thailand and Japan. The screening strategy was built up to exclude Acetobacter strains by adding gluconic acid to a culture medium in the presence of 1% D-sorbitol or 1% D-mannitol. Eight strains of thermotolerant Gluconobacter were isolated and screened for D-fructose and L-sorbose production. They grew at wide range of temperatures from 10°C to 37°C and had average optimum growth temperature between 30-33°C. All strains were able to produce L-sorbose and D-fructose at higher temperatures such as 37°C. The 16S rRNA sequences analysis showed that the isolated strains were almost identical to G. frateurii with scores of 99.36-99.79%. Among these eight strains, especially strains CHM16 and CHM54 had high oxidase activity for D-mannitol and D-sorbitol, converting it to D-fructose and L-sorbose at 37°C, respectively. Sugar alcohols oxidation proceeded without a lag time, but Gluconobacter frateurii IFO 3264T was unable to do such fermentation at 37°C. Fermentation efficiency and fermentation rate of the strains CHM16 and CHM54 were quite high and they rapidly oxidized D-mannitol and D-sorbitol to D-fructose and L-sorbose at almost 100% within 24 h at 30°C. Even oxidative fermentation of D-fructose done at 37°C, the strain CHM16 still accumulated D-fructose at 80% within 24 h. The efficiency of L-sorbose fermentation by the strain CHM54 at 37°C was superior to that observed at 30°C. Thus, the eight strains were finally classified as thermotolerant members of G. frateurii.  相似文献   

13.
An α-d-galactosidase was purified from the culture filtrate of Corticium rolfsii IFO 6146 by a combination of QAE-Sephadex A-50 and SE-Sephadex C-50 chromatography. The purified enzyme was demonstrated to be free of other possibly interfering glycosidases and glycanases. The maximum activity of the enzyme towards p-nitrophenyl α-d-galactopyrano-side was found to be at pH 2.5 to 4.5, and the enzyme was fairly active at pH 1.1 to 2.0. The enzyme was stable over a pH range 4.0 to 7.0 at 5°C for 72 hr and relatively unstable at pH 1.1 to 2.0 as compared with endo-polygalacturonase, α-l-arabinofuranosidase and β-d-galactosidase produced by C. rolfsii. The enzymic activity was completely inhibited by Hg2+ and Ag+ ions, respectively. Km values were determined to be 0.16 × 10?3 m for p-nitrophenyl α-d-galactopyranoside and 0.26 × 10?3m for o-nitrophenyl α-d-galactopyranoside. The values of Vmax were also determined to be 26.6 μmoles and 28.6 μmoles per min per mg for p- and o-nitrophenyl α-d-galactopyranoside, respectively.  相似文献   

14.
The best inducers for D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) were a poor substrate, N-acetyl-;-methyl-D-leucine, and an inhibitor, N-acetyl-D-alloisoleucine. The enzyme has been homogeneously purified. The molecular weight of the native enzyme was estimated to be 58,000 by gel filtration. A subunit molecular weight of 52,000 was measured by SD8–PAGE, indicating that the native protein is a monomer. The isoelectric point was 5.2. The enzyme was specific to the D-isomer and hydrolyzed N-acetyl derivatives of D-leucine, D-phenylalanine, D-norleucine, D-methionine, and D-valine, and also N-formyl, N-butyryl, and N-propionyl derivatives of D-leucine. The Km for N-acetyl-D-leucine was 9.8mM. The optimum pH and temperature were 7.0 and 50°C, respectively. The stabilities of pH and temperature were 8.1 and 40°C. D-Aminoacylases from three species of the genus Alcaligenes differ in inducer and substrate specificities, but are similar with respect to molecular weight and N-terminal amino acid sequence.  相似文献   

15.
d-Gluconate dehydrogenase catalyzing the oxidation of d-gluconate to 2-keto-d-gluconate was solubilized with Triton X-100 from the membrane of Gluconobacter dioxyacetonicus IFO 3271 and purified to an almost homogeneous state by chromatographies on DEAE-cellulose and CM-Toyopearl in the presence of 0.1% Triton X-100. The enzyme had three subunits with molecular weights of 64,000, 45,000 and 21,000, and contained approximately 2 mol of heme per mol of the enzyme. The prosthetic group of the dehydrogenase was found to be a flavin covalently bound to the enzyme protein. The substrate specificity of the purified enzyme was very strict for d-gluconate and the apparent Michaelis constant for d-gluconate was 2.2 mm. The optimum pH and temperature of the purified enzyme were 6.0 and 40°C, respectively.  相似文献   

16.
The properties of uridine Phosphorylase (UPase) and purine nucleoside Phosphorylase (PNPase) at high temperature were investigated. Both enzymes were found to be distributed in a wide range of bacteria and were partially purified from Enterobacter aerogenes AJ 11125 by heat treatment, ammonium sulfate fractionation and column chromatographies onDEAE-cellulose and Sephadex G-150. The UPase was purified 109-fold, and it showed an optimum pH of 8.5 and optimum temperature of 65°C, and activity toward uridine, 2′-deoxyuridine, thymidine and uracil arabinoside but not cytidine. The Km values of UPase for uridine were 0.7 mm at 40°C and 1.8 mm at 60°C. The PNPase was purified 83-fold, and it showed an optimum pH of 6.8 and optimum temperature of 60°C, and significant activity toward purine arabinosides as well as purine ribosides. The Km values of PNPase for inosine were 0.8 mm at 40°C and 2.2 mm at 60°C.  相似文献   

17.
The β-d-glucosidase (EC. 3.2.1.21) activity of Bifidobacterium breve 203 was increased by acclimation with cellobiose, and the enzyme was purified to homogeneity from cell-free extracts of an acclimatized strain of B. breve clb, by ammonium sulfate fractionation and column chromatographies of anion-exchange, gel filtration, Gigapaite, and hydrophobic interaction. This enzyme had not only β- d-glucosidase activity but also β- d-fucosidase activity, which is specific to Bifidobacteria in intestinal flora. The molecular weight of the purified enzyme was estimated to be 47,000–48,000 and the enzyme was assumed to be a monomeric protein. The optimum pH and temperature of the enzyme were around 5.5 and 45°C, respectively. The enzyme was stable up to 40°C and between pH 5 and 8. The isoelectric point of the enzyme was 4.3 and the Km values for p-nitrophenyl-β-d-glucoside and p-nitrophenyl-β-d-fucoside were 1.3mm and 0.7 mm, respectively. This enzyme had also transferase activity for the β-d-fucosyl group but not for the β-d-glucosyl group. The N-terminal amino acid sequence of this enzyme was similar to those of β-d-glucosidase from other bacteria, actinomycetes, and plants.  相似文献   

18.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

19.
An aminopeptidase was purified from an aqueous extract of mullet roe in the presence of 2-mercaptoethanol by fractionation with ammonium sulfate and column chromatography on DEAE-cellulose and Sephadex G-200. The molecular weight of the enzyme was 184,000 by gel filtration, and the enzyme appeared to consist of two homogenous subunits. The optimal pH and optimal temperature for activity were 7.4 and 45°C, respectively. Puromycin, p-chloromercuribenzoic acid, and o-phenanthroline inhibited the enzyme n on-competitively (their Ki = 1.34 μm, 0.113mm and 0.145 mm, respectively), while 2-mercaptoethylamine was competitive (Ki = 0.056 mm). The enzyme was also inhibited by l-amino acids, in particular glutamic acid. The enzyme could hydrolyze a variety of α-aminoacyl β-naphthylamides and was most active on l-alanyl-β-naphthylamide. Judging from these properties, the mullet roe aminopeptidase resembles soluble alanyl amino-peptidase [EC 3.4.11.14].  相似文献   

20.
Glucose isomerizing enzyme was partially purified after investigation on the properties of crude enzyme extract. The crude extract was partly inactivated by the contact with air. The addition of manganese was effective to improve the stability. Magnesium was essential to the enzyme action and cobalt accelerated the reaction.

The maximal activity was observed at pH about 7.6 and 50°C was optimal for the incubation time of 30 minutes. The enzyme solution reacted with d-xylose as well as d-glucose. The activity of the enzyme was inhibited at high glucose concentrations.

An enzyme which catalyzes the conversion of d-glucose to d-fructose has been demonstrated in cell-free extracts of Streptomyces phaeochromo genus grown in the presence of D-xylose. The enzyme preparation reacts with d-glucose and d-xylose, but not with other sugars tested. It appears to require magnesium for the maximal activity and the addition of cobaltous ion remarkably intensifies the heat tolerance of the enzyme. The maximal activity occurs at about pH 9.3~9.5. Equilibrium is reached when about 52% fructose is present in the reaction mixture. The enzyme has half-maximal activity when the concentration of d-glucose is about 0.3 M at pH 9 and 60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号