首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Studies on sucrose synthetase. Kinetic mechanism   总被引:2,自引:0,他引:2  
The kinetic properties of Helianthus tuberosus sucrose synthetase, which catalyzes the reaction UDP-glucose + fructose = UDP + sucrose, have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP-glucose was competitive with UDP, whereas fructose was competitive with sucrose and uncompetitive with UDP. On the other hand, a dead-end inhibitor, salicine, was competitive with sucrose and uncompetitive with UDP. The results of initial velocity, product, and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

2.
Sucrose and sucrose 6-phosphate synthetase were isolated from potato tubers, partially purified and their properties studied. The sucrose synthetase showed optimum activity at 45° and was inhibited competitively by ADP and some phenolic glucosides. The Ki′s for these inhibitors were determined. Mg2+ was found to activate this enzyme. Activity toward UDP-glucose or ADP-glucose formation was measured. The optimum conditions for sucrose and UDP-glucose formation were found to differ. The specificity for the glucosyl donor and acceptor were determined.

The optimum conditions for sucrose 6-phosphate synthetase activity were studied. This enzyme was not inhibited by either ADP or phenolic glucosides; UDP-glucose was the only glucosyl donor for sucrose 6-phosphate formation.

  相似文献   

3.
The kinetic properties of wheat germ sucrose phosphate synthetase, which catalyzes the reaction UDP-glucose + fructose 6-phosphate → UDP + sucrose 6-phosphate have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP was competitive with UDP-glucose and noncompetitive with fructose 6-phosphate. A dead-end inhibitor, inorganic phosphate, was competitive with UDP-glucose and noncompetitive with fructose 6-phosphate. The results of initial velocity and product and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

4.
The nucleotides and the activities of both sucrose synthetase and granular starch synthetase in the konjak corm (Amorphophallus konjac C. Koch) have been investigated as a preliminary experiment on konjak mannan biosynthesis. On chromatographic separation on anion exchange resin and paper of compounds present in the acid ethanol extract from the corms, ascorbic acid, AMP, ADP, ATP, ADP-glucose, UTP, UDP-glucose, GTP, and GDP-mannose were isolated and tentatively identified. An unidentified nucleotide was also isolated.

Of the three nucleotide sugars, UDP-glucose was the most plentiful, while ADP-glucose was the least. The sucrose synthetase in konjak corms was as active as that in other plants. These observations suggest that the mechanism involved in sucrose cleavage in konjak corms is the same as that in other plants, such as sweet potato roots. Starch synthetase bound to starch granules in konjak corms was also found to be active when ADP-glucose was used as glucose donor. But UDP-glucose could not be substituted for ADP-glucose.

Based on these observations the mechanism of konjak mannan biosynthesis is discussed.  相似文献   

5.
Some properties of sucrose-P synthetases obtained from various plant tissues, including sweet potato roots, potato tubers and leaves of barley, rape and ladino clover were studied. The specific enzyme activity of the sucrose-P synthetase from sweet potato roots was much lower than that of the sucrose synthetase of the other tissues. The enzyme activity decreased gradually as the roots developed. The optimum pH did not differ between enzyme preparations from sweet potato roots and barley leaves. Manganese chloride exhibited a marked stimulative effect on the sucrose-P synthetase from sweet potato roots and potato tubers, whereas it was inhibited the barley leaf enzyme.

Kinetic studies of sucrose-P synthetase showed that the behavior of the enzyme to the substrates did not differ in the enzyme sources examined. The substrate saturation curve of the enzyme with respect to fructose-6-P was sigmodal in shape, giving a straight line with a slope of 1.35~1.5 (n value) in a plot of the data using the empirical Hill equation. On the other hand, enzymes from all the various tissues exhibited a hyperbolic substrate saturation curve for UDP-glucose, obeying the ordinary Michaelis-Menten type reaction. Manganese chloride had no effect on the Km for UDP-glucose, the S0.5 for fructose-6-P and the n value of the enzyme from potato tuber tissues.  相似文献   

6.
Sucrose synthetase (UDP-glucose:d-fructose-2-glucosyltransferase, EC 2.4.1.13) from ripening rice seeds was purified by ammonium sulfate fractionation and column chromatography of microgranular DEAE-cellulose (DE-32) and Neusilin (MgO· Al2O3·2SiO2). An enzyme preparation obtained was homogeneous as examined by polyacrylamide gel electrophoresis. The enzyme, having a molecular weight, 4.0 × 105, consists of 4 identical subunits, each having a molecular weight, 1.0 × 105.Examination of reaction kinetics of both sucrose synthesis and cleavage catalyzed by sucrose synthetase revealed that the rate of synthesis follows a Michaelis-Menten equation having the following parameters: Km(fructose)UDP-glucose, 6.9 mm; Km(fructose)ADP-glucose, 40 mm; Km(UDP-glucose), 5.3 mm; and Km(ADP-glucose), 3.8 mm. The cleavage reaction yielded the following values: Km(UDP), 0.8 mm; Km(ADP), 3.3 mm; and Km(sucrose)UDP, 290 mm. In the latter reaction the rate deviated from the Michaelis equation when ADP was used as the glucose acceptor, the n value being 1.6 by the Hill plot analysis and S0.5(sucrose)ADP, 400 mm. At high concentration of ADP the cleavage reaction was inhibited, while the synthesis reaction was inhibited with high concentrations of fructose.  相似文献   

7.
The kinetic data on sugarcane (Saccharum spp. hybrids) sucrose synthase (SuSy, UDP-glucose: D-fructose 2-alpha-D-glucosyltransferase, EC 2.4.1.13) are limited. We characterized kinetically a SuSy activity partially purified from sugarcane variety N19 leaf roll tissue. Primary plot analysis and product inhibition studies showed that a compulsory order ternary complex mechanism is followed, with UDP binding first and UDP-glucose dissociating last from the enzyme. Product inhibition studies showed that UDP-glucose is a competitive inhibitor with respect to UDP and a mixed inhibitor with respect to sucrose. Fructose is a mixed inhibitor with regard to both sucrose and UDP. Kinetic constants are as follows: Km values (mm, +/- SE) were, for sucrose, 35.9 +/- 2.3; for UDP, 0.00191 +/- 0.00019; for UDP-glucose, 0.234 +/- 0.025 and for fructose, 6.49 +/- 0.61. values were, for sucrose, 227 mm; for UDP, 0.086 mm; for UDP-glucose, 0.104; and for fructose, 2.23 mm. Replacing estimated kinetic parameters of SuSy in a kinetic model of sucrose accumulation with experimentally determined parameters of the partially purified isoform had significant effects on model outputs, with a 41% increase in sucrose concentration and 7.5-fold reduction in fructose the most notable. Of the metabolites included in the model, fructose concentration was most affected by changes in SuSy activity: doubling and halving of SuSy activity reduced and increased the steady-state fructose concentration by about 42 and 140%, respectively. It is concluded that different isoforms of SuSy could have significant differential effects on metabolite concentrations in vivo, therefore impacting on metabolic regulation.  相似文献   

8.
Sucrose synthase catalyzes the reversible conversion of sucrose and UDP into fructose and UDP-glucose. In filamentous cyanobacteria, the sucrose cleavage direction plays a key physiological function in carbon metabolism, nitrogen fixation, and stress tolerance. In unicellular strains, the function of sucrose synthase has not been elucidated. We report a detailed biochemical characterization of sucrose synthase from Thermosynechococcus elongatus after the gene was artificially synthesized for optimal expression in Escherichia coli. The homogeneous recombinant sucrose synthase was highly specific for ADP as substrate, constituting the first one with this unique characteristic, and strongly suggesting an interaction between sucrose and glycogen metabolism.  相似文献   

9.
Radioactive sucrose, supplied through the cut base to Pisum sativum epicotyls, was transported to the growing apex (plumule and hook) and used there for the synthesis mainly of uridine diphosphoglucose (UDP- glucose), fructose and cell wall glucan. Enzyme extracts of the apical tissue contained sucrose synthetase activity which was freely reversible, i.e. formed UDP-glucose and fructose from sucrose (pH optimum = 6·6 for the cleavage reaction, Km for sucrose = 63 mM). Particulate fractions of the same tissue contained a β-glucan synthetase which utilized UDP-glucose for formation of alkali-soluble and -insoluble products (pH optimum = 8·4, Km for UDP-glucose = 1·9 mM). Values for Vmax and yields of these two synthetase activities were sufficient to account for observed rates of cellulose deposition during epicotyl growth (15–25 μg/hr/epicotyl). When soluble pea enzyme was supplied with sucrose and UDP at pH 6·6 and then the preparation was supplemented with particles bearing β-glucan synthetase at pH 8·4, the glucose moiety of sucrose was converted to glucan in vitro. The results indicate that it is feasible for these synthetases to co-operate in vivo to generate β-glucan for expanding cell walls.  相似文献   

10.
J.S. Tsay  W.L. Kuo  C.G. Kuo 《Phytochemistry》1983,22(7):1573-1576
The levels of free sugars, starch and enzymes involved in starch metabolism—sucrose synthetase, UDP and ADP glucose pyrophosphorylase, phosphorylase and starch synthetase—were assayed during seed development of three cultivars of mung bean (Vigna radiata). Free sugars and starch increased with increasing seed weight. Changes in levels of sucrose synthetase, UDP- and ADP-glucose pyrophosphorylases, and phosphorylase were paralleled by changes in starch accumulation. After the maximum activity levels of these enzymes had been reached, maximum activities of soluble starch synthetase and starch granule-bound starch synthetase occurred. There were high activities of sucrose synthetase and phosphorylase at maximum rates of starch accumulation. Thus, starch could be synthesized via the ADP glucose pathway in mung bean seeds. However, phosphorylase may account for the starch accumulation in the early stages of mung bean seed development.  相似文献   

11.
UDP-glucose pyrophosphorylase from potato tuber was purified 243-fold to a nearly homogeneous state with a recovery of 30%. The purified enzyme utilized UDP-glucose, but not ADP-glucose, as the substrate, and was not activated by 3-phosphoglyceric acid. Product inhibition studies revealed the sequential binding of UDP-glucose and MgPPi and the sequential release of glucose-1-phosphate and MgUTP, in this order. Analyses of the effects of Mg2+ on the enzyme activity suggest that the MgPPi and MgUTP complexes are the actual substrates for the enzyme reaction, and that free UTP acts as an inhibitor. The enzyme exists probably as the monomer of an approximately 50-kDa polypeptide with a blocked amino terminus. For structural comparison, 29 peptides isolated from a tryptic digest of the S-carboxymethylated enzyme were sequenced. The results show that the potato tuber enzyme is homologous to UDP-glucose pyrophosphorylase from slime mold, but not to ADP-glucose pyrophosphorylase from Escherichia coli, and provide structural evidence that UDP-glucose and ADP-glucose pyrophosphorylase are two different protein entities.  相似文献   

12.
The unique character of the plant glucosyltransferase sucrosesynthase, to catalyse in vitro the synthesis and cleavage ofsucrose under appropriate conditions, can be exploited for theenzymatic synthesis of carbohydrates. The present paper describesthe potential utilization of sucrose synthase from rice forthe enzymatic synthesis of activated sugars and saccharides.In the cleavage reaction of sucrose, the nucleoside diphosphatescan be used in the order UDP > TDP > ADP > CDP >GDP to obtain the corresponding activated glucoses. In batchreactions, >90% conversion of UDP and TDP could be achieved.Substituting different di- and trisaccharides for sucrose inthe cleavage reaction with UDP 2-deoxysucrose was the most promisingsubstrate. Sucrose synthase was combined with UDP-galactose4'-epimerase and ß1–4 galactosyltransferaseto synthesize N-acetyllactosamine with in situ regenerationof UDP-glucose. In the synthesis reaction of sucrose synthase,different donor (UDP-sugars) and acceptor substrates were investigated.UDP-N-acetylglucosamine and UDP-xylose could be used in combinationwith fructose as acceptor. D-Xylulose, D-tagatose, D-lyxose,D-psicose, L-sorbose, D-mannose, L-arabinose, 1, 6 anhydroglucose,lactulose, raffinose and isomaltulose can serve as acceptorsfor UDP-glucose. N-acetyllactosamine nucleotide sugars saccharides sucrose synthase  相似文献   

13.
Biosynthesis of Starch in Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed.  相似文献   

14.
This work reports changes in sucrose synthase and invertase activities throughout endosperm development in wheat, together with the associated substrates and metabolites, sucrose, UDP, glucose, fructose and UDP-glucose. Throughout endosperm development, sucrose synthase had consistently higher activity than invertase and indeed invertase activity did not change appreciably. The observed variation in pattern and amounts of glucose and fructose present during the mid- and late stages of endosperm development confirmed the suggestion that invertase was not the preferred pathway of sucrose catabolism. Kinetic parameters for sucrose synthase were determined in crude extracts. Estimates of UDP and sucrose concentrations suggest that sucrose synthase is unlikely to achieve its potential maximum velocity. This limitation may however be overcome in part by the apparent excess catalytic activity measured during endosperm development.  相似文献   

15.
A method is described for the extraction and measurement of soluble nucleotides from wheat grain. Nucleotides were separated (80-90% recovery) by paper chromatography followed by electrophoresis. The nucleotides extracted were ADP-glucose, ATP, ADP, AMP, and NAD; UDP-glucose, UTP, UDP, and UMP with smaller quantities of cytidine nucleotides.  相似文献   

16.
Overexpression of inorganic pyrophosphatase (PPase) from Escherichia coli in the cytosol of plants (ppa1 plants) leads to a decrease of inorganic pyrophosphate (PPi; U. Sonnewald, 1992, Plant J 2: 571–581). The consequences for sucrose-starch interconversions have now been studied in growing potato (Solanum tuberosum L. cv. Desirée) tubers. Sucrose is degraded via sucrose synthase and UDP-glucose pyrophosphorylase in growing tubers, and it was expected that the low PPi in the ppa1 transformants would restrict the mobilisation of sucrose and conversion to starch. Over-expression of PPase resulted in an accumulation of sucrose and UDP-glucose, and decreased concentrations of hexose phosphates and glycerate-3-phosphate in growing ppa1 tubers. Unexpectedly, the rate of degradation of [14C] sucrose was increased by up to 30%, the rate of starch synthesis was increased, and the starch content was increased by 20–30% in ppa1 tubers compared to wild-type tubers. Reasons for this unexpectedly efficient conversion of sucrose to starch in the ppa1 tubers were investigated. (i) The transformed tubers contained increased activities of several enzymes required for sucrose-starch interconversions including two- to threefold more sucrose synthase and 60% more ADP-glucose pyrophosphorylase. They also contained 30–100% increased activities of several glycolytic enzymes and amylase, increased protein, and unaltered or slightly decreased starch phosphorylase, acid invertase and mannosidase. (ii) The transformants contained higher pools of uridine nucleotides. As a result, although the UDP-glucose pool is increased two- to threefold, this does not lead to a decrease of UTP or UDP. (iii) The transformants contained twofold larger pools of ATP and ADP, and ADP-glucose was increased by up to threefold. In stored ppa1 tubers, there were no changes in the activities of glycolytic enzymes, and nucleotides did not increase. It is concluded that in growing tubers PPi has a wider significance than just being an energy donor for specific reactions in the cytosol. Increased rates of PPi hydrolysis also affect general aspects of cell activity including the levels of nucleotides and protein. Possible ways in which PPi hydrolysis could affect these processes are discussed. Received: 9 July 1997 / Accepted: 3 November 1997  相似文献   

17.
Stevioside and rebaudioside A are the chief diterpene glycosides present in the leaves of Stevia rebaudiana. Rebaudioside A imparts a desirable sweet taste, while stevioside produces a residual bitter aftertaste. Enzymatic synthesis of rebaudioside A from stevioside can increase the ratio of rebaudioside A to stevioside in steviol glycoside products, providing a conceivable strategy to improve the organoleptic properties of steviol glycoside products. Here, we demonstrate the efficient conversion of stevioside to rebaudioside A by coupling the activities of recombinant UDP-glucosyltransferase UGT76G1 from S. rebaudiana and sucrose synthase AtSUS1 from Arabidopsis thaliana. The conversion occurred via regeneration of UDP-glucose by AtSUS1. UDP was applicable as the initial material instead of UDP-glucose for UDP-glucose recycling. The amount of UDP could be greatly reduced in the reaction mixture. Rebaudioside A yield in 30?h with 2.4?mM stevioside, 7.2?mM sucrose, and 0.006?mM UDP was 78%.  相似文献   

18.
The properties of spinach leaf sucrose-phosphate synthetase (EC 2.4.1.14) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) have been studied. These two enzymes have been considered to be important in the control of sucrose synthesis. Sucrose-phosphate synthetase from leaf tissue has not been studied in detail previously and we report a technique for purifying this enzyme 50-fold by chromatography on AH-Sepharose 4B. This method frees the enzyme from contaminants which interfere with assay procedures with little or no loss of activity. The partially purified enzyme has a Km for UDP-glucose of 7.1 mm and for fructose 6-phosphate of 0.8 mm. Fructose 1,6-bisphosphate, inorganic phosphate and UDP are strong inhibitors. The inhibition patterns of these suggest that the enzyme operates either by an ordered bi-bi or a Theorell-Chance mechanism. Partially purified cytosolic fructose-1,6-bisphosphatase is not only inhibited by AMP as previously reported, but is also inhibited by fructose 6-phosphate and UDP. From our observations, we conclude that sucrose biosynthesis is indeed controlled through these two enzymes and it appears that the rate of sucrose synthesis is largely dependent upon the supply of triose phosphate and ATP from the chloroplast.  相似文献   

19.
The gene sus1 from Solanum tuberosum L. encoding for sucrose synthase 1 was cloned into the plasmid pDR195 under the control of the PMA1 promotor. After transformation of Saccharomyces cerevisiae strain 22574d sus1 was constitutively expressed giving a specific activity of 0.3Umg(-1) protein in the crude extract. A one-step purification by Q-Sepharose resulted in an 14-fold purified enzyme preparation in 74% yield. SuSy1 was subsequently purified by immobilized metal ion affinity chromatography and characterized for its utilization in synthesizing different nucleotide sugars and sucrose analogues. The kinetic constants for the cleavage and synthesis reaction were determined: K(m) (UDP) 4microM; K(iS) (UDP) 0.11mM; K(m) (sucrose) 91.6mM; K(m) (UDP-Glc) 0.5mM; K(iS) (UDP-Glc) 2.3mM; K(m) (D-fructose) 2.1mM; K(iS) (D-fructose) 35.9mM. Different nucleoside diphosphates as well as different donor substrate were accepted as follows: UDP>dTDP>ADP>CDP>GDP in the cleavage reaction and UDP-Glc>dTDP-Glc>ADP-Glc>CDP-Glc in the synthesis reaction. SuSy1 shows also a broad acceptance of D- and L-ketoses and D- and L-aldoses. The acceptance of aldoses was deduced from the binding of the inhibitor 5-deoxy-D-fructose (K(i) 0.3mM), an analogue of the natural substrate D-fructopyranoside. The broad substrate spectrum renders SuSy1 from potato a versatile biocatalyst for carbohydrate engineering.  相似文献   

20.
Import into potato (Solarium tuberosum L. cv. Record) tubers was terminated by removing the sink at its connection with the stolon. The ability of discs of storage tissue from the excised tubers to take up exogenous sugars and convert them to starch was compared with that of discs from untreated tubers from the same plant population. In rapidly-growing control tubers, glucose and fructose were taken up to a greater extent than sucrose, 77% of the glucose being converted to starch within 3 h (compared with 64% and 27% for fructose and sucrose, respectively). These values fell as the tubers aged but the ranking (glucose > fructose > sucrose) was maintained, emphasising a severe rate-limiting step following the import of sucrose into the growing tuber. Sink isolation had little effect on the ability of the storage cells to take up exogenous sucrose across the plasmalemma for up to 7 d after sink isolation. However, the ability of the same cells to convert the sucrose to starch was severely inhibited within 24 h, as was the sensitivity of starch synthesis to turgor. In the case of glucose, sink isolation inhibited both the uptake and the conversion to starch, the latter being inhibited to a greater degree. A detailed metabolic study of tubers 7 d after excision showed that, with sucrose as substrate, 94% of the radioactivity in the soluble sugar pool was recovered in sucrose following sink isolation (92% in control tubers). However, with glucose as substrate, 80% of the radioactivity was recovered as sucrose following tuber excision (28% in control tubers), providing evidence that sucrose synthesis acts as a major alternative carbon sink when starch synthesis is inhibited. In the same tubers, sucrose-synthase activity decreased by 70% following sink isolation, compared with a 45% reduction in ADP-glucose pyrophosphorylase. Activities of UDP-glucose pyrophosphorylase, starch phosphorylase, starch synthase nd both PPi- and ATP-dependent phosphofructokinases remained unchanged. Acid-invertase activity increased fivefold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号