首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M.A. Rea  W.J. McBride 《Life sciences》1978,23(24):2355-2359
The effect of the x-irradiation-induced loss of cerebellar granule and stellate cells on the levels of glutamate, aspartate and GABA in regions of the rat cerebellum was determined. The level of glutamate was significantly lower in the neuron-depleted cerebellar cortex while GABA levels were higher than control values in the cerebellar cortex and white matter of the x-irradiated rats. Aspartate levels were not changed by x-irradiation in any cerebellar region. The data is discussed in terms of the proposed role of glutamate as the excitatory neurotransmitter released from granule cells.  相似文献   

2.
Abstract: The monoclonal antibody 4C5 recognizes a neuron-specific surface antigen (4C5 antigen) in the CNS and PNS of the rat. In the present study we investigated the expression of 4C5 antigen in the developing cerebellum of the rat and the functional role of this molecule during cerebellar morphogenesis. Immunoblotting and immunohistochemistry in sections of cerebellar cortex revealed an age-dependent decrease in the expression of the 4C5 antigen. In cerebellar primary cell cultures, 4C5 immunoreactivity was detected both on granule and on Purkinje neurons. Granule cell migration was inhibited in cerebellar explants derived from 8-day-old rats and cultured for 2 days in the presence of antibodies against the 4C5 antigen. Electron microscope immunocytochemistry revealed that in 8-day-old rat cerebellum, 4C5 immunoreactivity was localized on the cell bodies of granule neurons in the external and internal granular layers and on parallel fibers in the developing molecular layer as well as at contact sites between these cellular elements. It was not detected on Bergmann glia. These results suggest strongly that the 4C5 antigen is involved in granule cell migration during cerebellar development, possibly via neuron-neuron interactions.  相似文献   

3.
Cerebellar granule cells were cocultured with astrocytes from either cerebral cortex or cerebellum in two different systems. In one system the cells were plated next to each other only sharing the culture medium (separated cocultures) and in the other system the granule cells were plated on top of a preformed layer of astrocytes (sandwich cocultures). Using astrocytes from cerebellum, granule cells developed morphologically and functionally showing a characteristic high activity of the glutamate synthesizing enzyme aspartate aminotransferase (AAT) as well as a high stimulus-coupled transmitter release regardless of the culture system, i.e., granule cells could grow on top of cerebellar astrocytes as well as next to these cells. In the case of cerebral cortex astrocytes it was found that cerebellar granule cells did not develop (11% survival) when seeded on top of these astrocytes. This was indicated by the morphological appearance of the cultures as well as by a negligible difference between the AAT activity in sandwich cocultures and astrocytes cultured alone. On the other hand, granule cells in separated cocultures with cerebral cortex astrocytes exhibited a normal morphology and a high activity of AAT as well as a large stimulus-coupled transmitter release. Cerebellar and cortical astrocytes expressed the astrocyte specific enzyme glutamine synthetase in a glucocorticoid-inducible form regardless of the culture system. The results show that under conditions of direct contact between granule cells and astrocytes, regional specificity exists with regard to neuron-glia contacts. This specificity does not seem to involve soluble factors present in the culture medium because in separated cocultures the cerebellar granule cells developed normally regardless of the regional origin of the astrocytes.  相似文献   

4.
The present report describes the genesis, development and topographical distribution of ectopic cells of the external granular layer in the subarachnoid space covering the rat cerebellum. Following one intracisternal injection to newborn rats of 100 micrograms 6-hydroxydopamine (6-OHDA), the meningeal cells degenerate and are removed by phagocytosis within 24 h post injection (p.i.), leaving the cerebellar cortex without a pia-arachnoid cover. Defects appear in the basal lamina investing the cerebellar cortex 3 to 5 days p.i., and both external granule cells and 'sprouts' from Bergmann-glia endfeet grow into the subarachnoid space. The latter form large, flat glial lamellae and cover extensive areas of the denuded cerebellar surface, although they do not form a glial scar over the exposed neuropil of the cerebellar cortex. The numbers of ectopic external granule cells increase within the subarachnoid space both by proliferation and a continuous efflux of cells from the cerebellar cortex. They migrate, aggregate, and ultimately develop into granule, stellate and basket cells, the morphology of which is indistinguishable from their counterparts in situ; they make specific afferent and efferent connections, both among themselves and with the underlying cerebellar cortex and brainstem. The distribution of ectopic external granule cells and their derivatives is restricted to the anterior vermal fissures and the vermal-hemispheric junctions. The present results indicate that external granule cells and their derivatives are capable of both differentiating normally and surviving in the subarachnoid space if they become associated with glial cells and establish synaptic connections.  相似文献   

5.
The chemokine SDF-1 alpha (CXC12) and its receptor CXCR4 have been shown to play a role in the development of normal cerebellar cytoarchitecture. We report here that SDF-1 alpha both induces chemotactic responses in granule precursor cells and enhances granule cell proliferative responses to Sonic hedgehog. Chemotactic and proliferative responses to SDF-1 alpha are greater in granule cells obtained from cerebella of animals in the first postnatal week, coinciding with the observed in vivo peak in cerebellar CXCR4 expression. SDF-1 alpha activation of neuronal CXCR4 differs from activation of CXCR4 in leukocytes in that SDF-1 alpha-induced calcium flux is activity dependent, requiring predepolarization with KCl or pretreatment with glutamate. However, as is the case in leukocytes, neuronal responses to SDF-1 alpha are all abolished by pretreatment of granule cells with pertussis toxin, suggesting they occur through G(alpha i) activation. In conclusion, SDF-1 alpha plays a role in two important processes of granule cell maturation - proliferation and migration - assisting in the achievement of appropriate cell number and position in the cerebellar cortex.  相似文献   

6.
We investigated calretinin expression in cerebellar granule cells of 30-day-old leaner mice to understand possible changes in calcium homeostasis due to the calcium channel mutation that these mice carry. Quantitative in situ hybridization histochemistry showed decreased calretinin mRNA expression in the leaner cerebellum. Immunohistochemical staining also revealed decreased calretinin immunoreactivity in the leaner cerebellum. To exclude the effect of granule cell loss that occurs in the leaner mouse when comparing cerebellar calretinin expression, the number of granule cells per unit area in the cerebellum was compared to the wild-type cerebellum. Granule cell counts per unit area of cerebellum revealed similar numbers of granule cells present in wild-type and leaner mice. Laser capture microdissection (LCM) was employed to obtain an equal number of granule cells from wild-type and leaner mice. Western blot analysis with LCM-procured cerebellar granule cells showed decreased calretinin expression in leaner granule cells. These results indicate that there is an absolute decrease in calretinin expression in leaner granule cells even when granule cell loss is taken into account. Decreased calretinin expression in leaner granule cells may contribute to altered calcium buffering capacity. This alteration could be an adaptive change due to the calcium channel dysfunction, and may result in abnormal neuronal excitability and gene expression.  相似文献   

7.
The patterns of deposition of thrombospondin (TSP), a trimeric extracellular matrix glycoprotein, were determined during the initial establishment of the external granule cell layer and the subsequent inward migration of granule cells forming the molecular and (internal) granule cell layers. The early homogeneous deposition of TSP became restricted to the rhombic lip in the region of granule cell exit from the neuroepithelium, and was present between migrating granule cells. During the later inward migration of granule cells, little TSP was associated with dividing granule cells; it was enriched in premigratory granule cells. With the cessation of migration, TSP was lost except in association with fasciculating axons in the molecular layer where staining persisted briefly. At the EM level, TSP was associated with the leading process of granule cells as they associated with Bergmann glial cells and migrated through the molecular layer. TSP was present within granule cell axons; Purkinje cells and their dendrites, as well as Bergmann glial fibers and endfeet were negative for TSP. When anti-TSP antibodies were added to explant cultures of cerebellar cortex during active granule cell migration, a dose-dependent inhibition of migration was observed. In control cultures, granule cells migrated into the (internal) granule cell layer, while granule cells exposed to anti-TSP antibodies were arrested within the external granule cell layer. These results suggest that TSP plays an important role in the histogenesis of the cerebellar cortex by influencing granule cell migration.  相似文献   

8.
The properties of depolarization-evoked calcium transients are known to change during the maturation of dissociated cerebellar granule neuron cultures. Here, we assessed the role of the calcium-induced calcium release (CICR) mechanism in granule neuron maturation. Both depletion of intracellular calcium stores and the pharmacological blockade of CICR significantly reduced depolarization stimulated calcium transients in young but not older (>/=1 week) cultures. This functional decrease in the CICR signaling component was associated with the reduction of ryanodine receptor (RyR) immunoreactivity during granule neuron maturation both in culture and in the intact cerebellum. These observations are consistent with the idea that changes in RyR expression result in functional changes in calcium signaling transients during normal neuronal development in the intact mammalian cerebellum as well as in reduced neuronal cultures. Pharmacological disruption of CICR during neuron differentiation in vitro resulted in dose-dependent changes in survival, GAP-43 expression, and the acquisition of the glutamatergic neurotransmitter phenotype. Together, these results indicate that CICR function plays a physiologically relevant role in regulating early granule neuron differentiation in vitro and is likely to play a role in cerebellar maturation.  相似文献   

9.
Fetal cerebellar anlage from rat fetuses of 15-16 operational days were grafted into the anterior chamber of the eye of adult female albino rat recipients. Survival time of the transplants--containing both cerebellar cortex and cerebellar nuclei--was 2 to 2 1/2 months. Electron microscopical (EM) studies of the thin, under-developed granular layer of the laminated cerebellar cortex revealed the presence of well differentiated cerebellar glomeruli, surrounded by granule cell perikarya. As in the normal cerebellar cortex, the central profile of the glomerular complex was the large mossy terminal, containing spheroid synaptic vesicles, and forming synaptic contacts with dendrites and dendritic digits of the granule cells. Golgi cell axonal varicosities, containing ovoid or pleomorphic synaptic vesicles were found also on the periphery of the glomeruli. In addition, in several synaptic glomeruli, a third neuronal element was also observed, containing flat, discoidal vesicles and receiving synaptic contacts from mossy and Golgi axons, but being also presynaptic to granule cell dendrites. It is suggested that all mossy terminals in the cerebellar transplant originate from the cerebellar nucleus. Morphological evidence is also provided that the presynaptic dendrite-like processes--never found in normal cerebellar cortex--are also processes of nuclear neurons.  相似文献   

10.
We have investigated the detailed regulation of neuronal firing pattern by the cytosolic calcium buffering capacity using a combination of mathematical modeling and patch-clamp recording in acute slice. Theoretical results show that a high calcium buffer concentration alters the characteristic regular firing of cerebellar granule cells and that a transition to various modes of oscillations occurs, including bursting. Using bifurcation analysis, we show that this transition from spiking to bursting is a consequence of the major slowdown of calcium dynamics. Patch-clamp recordings on cerebellar granule cells loaded with a high concentration of the fast calcium buffer BAPTA (15 mM) reveal dramatic alterations in their excitability as compared to cells loaded with 0.15 mM BAPTA. In high calcium buffering conditions, granule cells exhibit all bursting behaviors predicted by the model whereas bursting is never observed in low buffering. These results suggest that cytosolic calcium buffering capacity can tightly modulate neuronal firing patterns leading to generation of complex patterns and therefore that calcium-binding proteins may play a critical role in the non-synaptic plasticity and information processing in the central nervous system.  相似文献   

11.
The properties of depolarization‐evoked calcium transients are known to change during the maturation of dissociated cerebellar granule neuron cultures. Here, we assessed the role of the calcium‐induced calcium release (CICR) mechanism in granule neuron maturation. Both depletion of intracellular calcium stores and the pharmacological blockade of CICR significantly reduced depolarization stimulated calcium transients in young but not older (≥1 week) cultures. This functional decrease in the CICR signaling component was associated with the reduction of ryanodine receptor (RyR) immunoreactivity during granule neuron maturation both in culture and in the intact cerebellum. These observations are consistent with the idea that changes in RyR expression result in functional changes in calcium signaling transients during normal neuronal development in the intact mammalian cerebellum as well as in reduced neuronal cultures. Pharmacological disruption of CICR during neuron differentiation in vitro resulted in dose‐dependent changes in survival, GAP‐43 expression, and the acquisition of the glutamatergic neurotransmitter phenotype. Together, these results indicate that CICR function plays a physiologically relevant role in regulating early granule neuron differentiation in vitro and is likely to play a role in cerebellar maturation. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 134–147, 2000  相似文献   

12.
目的:研究人体小脑神经元的发育过程。方法:应用体视学方法,对18例不同时期人体小脑组织Golgi染色后进行观察,观测小脑皮质分层出现的时间,观测并计算神经元的数密度、体密度和表面积密度。结果:6月龄时,小脑皮质出现较明显的分子层、蒲肯野细胞层和颗粒层;星形细胞、篮状细胞、蒲肯野细胞、颗粒细胞和高尔基细胞的的数密度随月龄/年龄的增长而减少,体密度和表面积密度随月龄/年龄的增长而增加,但这些减小和增大是不等速的,6-8月龄变化最明显。结论:人体小脑神经元的发育呈现快慢交替、不均速发展,6~8月是小脑神经元发育的重要时期。  相似文献   

13.
The formation of the cerebellar circuitry depends on the outgrowth of connections between the two principal classes of neurons, granule neurons and Purkinje neurons. To identify genes that function in axon outgrowth, we have isolated a mouse homolog of C. elegans UNC51, which is required for axon formation, and tested its function in cerebellar granule neurons. Murine Unc51.1 encodes a novel serine/threonine kinase and is expressed in granule cells in the cerebellar cortex. Retroviral infection of immature granule cells with a dominant negative Unc51.1 results in inhibition of neurite outgrowth in vitro and in vivo. Moreover, infected neurons fail to express TAG-1 or neuron-specific beta-tubulin, suggesting that development is arrested prior to this initial step of differentiation. Thus, Unc51.1 signals the program of gene expression leading to the formation of granule cell axons.  相似文献   

14.
We have used the mammalian post-natal cerebellar cortex as a model to dissect out the molecular morphology of neuronal apoptosis in a well-defined population of central neurons: the cerebellar granule cells. By immunocytochemistry, in situ labeling of apoptotic cells, and analysis of cerebellar slices following particle-mediated gene transfer (biolistics), we have studied the relationship of cell death and cleavage of caspase 3, a key molecule in the execution of apoptosis, and monitored caspase 3 activation in living cells. Our results demonstrate the existence of caspase dependent and independent apoptotic pathways affecting the cerebellar granule cells at different stages of their life. Apoptosis of proliferating precursors and young pre-migratory cells occurs in the absence of caspase 3 cleavage, whereas cell death of post-mitotic post-migratory neurons is directly linked to caspase 3 activation. Data obtained from cerebellar cortex can be generalized to outline a more comprehensive picture of the cellular and molecular mechanisms of neuronal death not only in development, but also in a number of pathological conditions leading to neuronal loss.  相似文献   

15.
The localization of acetylcholinesterase (AChE) was studied in the cerebellar cortex of the crossbred trembler chickens by means of histo- and cytochemical methods. No essential differences between the crossbred normal and the crossbred trembler chickens were observed. The common results were as follows: Under a light microscope AChE activity was predominantly evident in the molecular layer, and secondly in the granular layer. AChE was ultrastructurally distributed principally in the cisternae of rough endoplasmic reticulum (ER) and in a part of nuclear envelope of the Purkinje, the Golgi and some of the basket and granule cells, and in a portion of the sacculus of the Golgi apparatus of the Purkinje cell only. In dendrites and the initial axon of the Purkinje cells the smooth ER also showed AChE activity. Although dendritic terminals of the Golgi cells contained AChE reaction products, the axon terminal did not. Some of the afferent terminal fibers forming the cerebellar glomerulus exhibited weakly a positive AChE reaction, while others in the vicinity did not show any AChE activity at all. However, the enzyme reaction product was localized in the intercellular spaces between a presynaptic afferent terminal and the postsynaptic granule cell dendritic terminals in the glomerulus. In addition, AChE activity was found in the form of spots in the intercellular spaces of both molecular and granular layers.  相似文献   

16.
小脑皮质神经元K^+单通道电流的生理特性   总被引:2,自引:0,他引:2  
用膜片钳技术的细胞贴附式和内面向外式,在分离培养的新生大鼠小脑皮质颗粒细胞膜上记录到钾离子通道电流,有以下的生理特性,最常见的通道电导为25pS,单通道电流幅度、开放时间、开放概率均受膜电位控制,通道开放时间分布直方图可用双指数拟合,无时间依赖性失活,不依赖钙离子,能被TEA阻断,表明此通道可能为延迟整流型K+通道。提示,小脑皮质颗粒细胞存在有不失活的25pS钾离子通道,不同于文献报道的,可能是一种新亚型的钾离子通道。  相似文献   

17.
In the cerebellar cortex, inhibitory inputs to granule cells exhibit prominent tonic and spillover components resulting from the activation of extrasynaptic receptors. A recent study shows how extrasynaptic inhibition affects information flow through cerebellar cortex.  相似文献   

18.
The function of Golgi cells in the cerebellar cortex is quantitatively examined in consideration of the nonlinear input-output characteristics and convergence and divergence numbers of cells. It is strongly suggested that the two signal paths to Golgi cells have different function. The feed-forward path will have the same function as assumed in the previous theories of the cerebellar cortex, that is, to keep the firing rate of granule cells approximately constant over considerable variation in the firing rate of mossy fibers. The feedback path will, on the other hand, have a new function which has not been assumed in the previous theories. The function is to cause oscillation of the firing rate of granule cells for stationary mossy fiber inputs. The assumption of the new function enables us to explain cerebellar function to keep stationary posture.  相似文献   

19.
Previous studies have indicated that recombinant cellular prion protein (PrP(C)), as well as a synthetic peptide of PrP(C), affects intracellular calcium homeostasis. To analyze whether calcium homeostasis in neurons is also affected by a loss of PrP(C), we performed microfluorometric calcium measurements on cultured cerebellar granule cells derived from prion protein-deficient (Prnp(0/0)) mice. The resting concentration of intracellular free calcium [Ca(2+)](i) was found to be slightly, but significantly, reduced in Prnp(0/0) mouse granule cell neurites. Moreover, we observed a highly significant reduction in the [Ca(2+)](i) increase after high potassium depolarization. Pharmacological studies further revealed that the L-type specific blocker nifedipine, which reduces the depolarization-induced [Ca(2+)](i) increase by 66% in wild-type granule cell somas, has no effect on [Ca(2+)](i) in Prnp(0/0) mouse granule cells. Patch-clamp measurements, however, did not reveal a reduced calcium influx through voltage-gated calcium channels in Prnp(0/0) mice. These data clearly indicate that loss of PrP(C) alters the intracellular calcium homeostasis of cultured cerebellar granule cells. There is no evidence, though, that this change is due to a direct alteration of voltage-gated calcium channels.  相似文献   

20.
This light and electron microscopic immunocytochemical study shows that the polypeptide PEP-19, a presumptive calcium binding protein specific to the nervous system, represents an excellent marker for cerebellar Purkinje cells and dorsal cochlear nucleus (DCoN) cartwheel cells. The polypeptide clearly reveals the entire populations of both types of neurons, including their complete dendritic and axonal arborizations. Other PEP-19 containing neurons in the two regions display weak immunoreactivity restricted to the cell body or to cell body and principal dendrites. Electron microscopic localization of PEP-19-like immunoreactivity reveals similarities between this polypeptide, parvalbumin, and a 28K vitamin D-dependent calcium binding protein. However, calmodulin, which is expressed in both Purkinje and granule cells, may differ from PEP-19. Similarities between the organization of the cerebellar cortex and the DCoN superficial layers have been known for some time, with several types of neurons in one system having their presumed homologue in the other. These data provide further support for the proposed structural and functional homology between Purkinje and cartwheel neurons, and establishes PEP-19 as a useful marker for examining degeneration of these two neuronal populations in murine cerebellar mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号