首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Lobo S  Florova G  Reynolds KA 《Biochemistry》2001,40(39):11955-11964
Acetyl-CoA:acyl carrier protein (ACP) transacylase (ACT) activity has been demonstrated for the 3-ketoacyl-ACP synthase III (KASIII) which initiates fatty acid biosynthesis in the type II dissociable fatty acid synthases of plants and bacteria. Several lines of evidence have indicated the possibility of ACT activity being associated with proteins other than KASIII. Using a crude extract of Streptomyces collinus, we have resolved from KASIII an additional protein with ACT activity and subsequently purified it 85-fold in five chromatographic steps. The 45 kDa protein was shown by gel filtration to have a molecular mass of 185 +/- 35 kDa, consistent with a homotetrameric structure for the native enzyme. The corresponding gene (fadA) was cloned and sequenced and shown to encode a protein with amino acid sequence homology to type II thiolases. The fadA was expressed in Escherichia coli, and the resulting recombinant FadA enzyme purified by metal chelate chromatography was shown to have both ACT and thiolase activities. Kinetic studies revealed that in an ACT assay FadA had a substrate specificity for a two-carbon acetyl-CoA substrate (K(m) 8.7 +/- 1.4 microM) but was able to use ACPs from both type II fatty acid and polyketide synthases (Streptomyces glaucescens FabC ACP, K(m) 10.7 +/- 1.4 microM; E. coli FabC ACP, K(m) 8.8 +/- 2 microM; FrenN ACP, K(m) 44 +/- 12 microM). In the thiolase assay kinetic analyses revealed similar K(m) values for binding of substrates acetoacetyl-CoA (K(m) 9.8 +/- 0.8 microM) and CoA (K(m) 10.9 +/- 1.8 microM). A Cys92Ser mutant of FadA possessed virtually unchanged K(m) values for acetoacetyl-CoA and CoA but had a greater than 99% decrease in k(cat) for the thiolase activity. No detectable ACT activity was observed for the Cys92Ser mutant, demonstrating that both activities are associated with FadA and likely involve formation of the same covalent acetyl-S-Cys enzyme intermediate. An ACT activity with ACP has not previously been observed for thiolases and in the case of the S. collinus FadA is significantly lower (k(cat) 3 min(-1)) than the thiolase activity of FadA (k(cat) 2170 min(-1)). The ACT activity of FadA is comparable to the KAS activity and significantly higher than the ACT activity, reported for a streptomycete KASIII.  相似文献   

2.
RedP is proposed to initiate undecylprodiginine biosynthesis in Streptomyces coelicolor by condensing an acyl-CoA with malonyl-ACP and is homologous to FabH that catalyzes the same reaction for initiation of fatty acid biosynthesis. Herein, we report the substrate specificities of RedP and FabH from assays using pairings of two acyl-CoA substrates (acetyl-CoA and isobutyryl-CoA) and two malonyl-ACP substrates (malonyl-RedQ and malonyl-FabC). RedP activity was observed only with a pairing of acetyl-CoA and malonyl-RedQ, consistent with its proposed role in initiating the formation of acetyl-CoA-derived prodiginines. Malonyl-FabC is not a substrate for RedP, indicating that ACP specificity is one of the factors that permit a separation between prodiginine and fatty acid biosynthetic processes. FabH demonstrated greater catalytic efficiency for isobutyryl-CoA in comparison with acetyl-CoA using malonyl-FabC, consistent with the observation that in streptomycetes, a broad mixture of fatty acids is synthesized, with those derived from branched-chain acyl-CoA starter units predominating. Diminished FabH activity was also observed using malonyl-RedQ with the same preference for isobutyryl-CoA, completing biochemical and genetic evidence that in the absence of RedP this enzyme can produce branched-chain alkyl prodiginines.  相似文献   

3.
Malaria, a disease caused by protozoan parasites of the genus Plasmodium, is one of the most dangerous infectious diseases, claiming millions of lives and infecting hundreds of millions of people annually. The pressing need for new antimalarials has been answered by the discovery of new drug targets from the malaria genome project. One of the early findings was the discovery of two genes encoding Type II fatty acid biosynthesis proteins: ACP (acyl carrier protein) and KASIII (beta-ketoacyl-ACP synthase III). The initiating steps of a Type II system require a third protein: malonyl-coenzyme A:ACP transacylase (MCAT). Here we report the identification of a single gene from P. falciparum encoding pfMCAT and the functional characterization of this enzyme. Pure recombinant pfMCAT catalyzes malonyl transfer from malonyl-coenzyme A (malonyl-CoA) to pfACP. In contrast, pfACP(trans), a construct of pfACP containing an amino-terminal apicoplast transit peptide, was not a substrate for pfMCAT. The product of the pfMCAT reaction, malonyl-pfACP, is a substrate for pfKASIII, which catalyzes the decarboxylative condensation of malonyl-pfACP and various acyl-CoAs. Consistent with a role in de novo fatty acid biosynthesis, pfKASIII exhibited typical KAS (beta-ketoacyl ACP synthase) activity using acetyl-CoA as substrate (k(cat) 230 min(-1), K(M) 17.9 +/- 3.4 microM). The pfKASIII can also catalyze the condensation of malonyl-pfACP and butyryl-CoA (k(cat) 200 min(-1), K(M) 35.7 +/- 4.4 microM) with similar efficiency, whereas isobutyryl-CoA is a poor substrate and displayed 13-fold less activity than that observed for acetyl-CoA. The pfKASIII has little preference for malonyl-pfACP (k(cat)/K(M) 64.9 min(-1)microM(-1)) over E. coli malonyl-ACP (k(cat)/K(M) 44.8 min(-1)microM(-1)). The pfKASIII also catalyzes the acyl-CoA:ACP transacylase (ACAT) reaction typically exhibited by KASIII enzymes, but does so almost 700-fold slower than the KAS reaction. Thiolactomycin did not inhbit pfKASIII (IC(50) > 330 microM), but three structurally similar substituted 1,2-dithiole-3-one compounds did inhibit pfKASIII with IC(50) values between 0.53 microM and 10.4 microM. These compounds also inhibited the growth of P. falciparum in culture.  相似文献   

4.
W Bao  P J Sheldon  C R Hutchinson 《Biochemistry》1999,38(30):9752-9757
Biosynthesis of the polyketide-derived carbon skeleton of daunorubicin (DNR) begins with propionate rather than acetate, which is the starter unit for most other aromatic polyketides. The dpsCgene has been implicated in specifying the unique propionate-starter unit, and it encodes a protein that is very similar to the Escherichia coli beta-ketoacyl:acyl carrier protein (ACP) synthase III (FabH or KS III) enzyme of fatty acid biosynthesis. Purified DpsC was found to use propionyl-coenzyme A as substrate and to be acylated by propionate at the Ser-118 residue. DpsC exhibits KS III activity in catalyzing the condensation of propionyl-CoA and malonyl-ACP, and also functions as an acyltransferase in the transfer of propionate to an ACP. The DpsC enzyme has a high-substrate specificity, utilizing only propionyl-CoA, and not malonyl-CoA, 2-methylmalonyl-CoA or acetyl-CoA, as the starter unit of DNR biosynthesis.  相似文献   

5.
Tang Y  Lee TS  Kobayashi S  Khosla C 《Biochemistry》2003,42(21):6588-6595
Many bacterial aromatic polyketides are synthesized by type II polyketide synthases (PKSs) which minimally consist of a ketosynthase-chain length factor (KS-CLF) heterodimer, an acyl carrier protein (ACP), and a malonyl-CoA:ACP transacylase (MAT). This minimal PKS initiates polyketide biosynthesis by decarboxylation of malonyl-ACP, which is catalyzed by the KS-CLF complex and leads to incorporation of an acetate starter unit. In non-acetate-primed PKSs, such as the frenolicin (fren) PKS and the R1128 PKS, decarboxylative priming is suppressed in favor of chain initiation with alternative acyl groups. Elucidation of these unusual priming pathways could lead to the engineered biosynthesis of polyketides containing novel starter units. Unique to some non-acetate-primed PKSs is a second catalytic module comprised of a dedicated homodimeric KS, an additional ACP, and a MAT. This initiation module is responsible for starter-unit selection and catalysis of the first chain elongation step. To elucidate the protein-protein recognition features of this dissociated multimodular PKS system, we expressed and purified two priming and two elongation KSs, a set of six ACPs from diverse sources, and a MAT. In the presence of the MAT, each ACP was labeled with malonyl-CoA rapidly. In the presence of a KS-CLF and MAT, all ACPs from minimal PKSs supported polyketide synthesis at comparable rates (k(cat) between 0.17 and 0.37 min(-1)), whereas PKS activity was attenuated by at least 50-fold in the presence of an ACP from an initiation module. In contrast, the opposite specificity pattern was observed with priming KSs: while ACPs from initiation modules were good substrates, ACPs from minimal PKSs were significantly poorer substrates. Our results show that KS-CLF and KSIII recognize orthogonal sets of ACPs, and the additional ACP is indispensable for the incorporation of non-acetate primer units. Sequence alignments of the two classes of ACPs identified a tyrosine residue that is unique to priming ACPs. Site-directed mutagenesis of this amino acid in the initiation and elongation module ACPs of the R1128 PKS confirmed the importance of this residue in modulating interactions between KSs and ACPs. Our study provides new biochemical insights into unusual chain initiation mechanisms of bacterial aromatic PKSs.  相似文献   

6.
The Streptomyces glaucescens beta-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) initiates straight- and branched-chain fatty acid biosynthesis by catalyzing the decarboxylative condensation of malonyl-ACP with different acyl-coenzyme A (CoA) primers. This KASIII has one cysteine residue, which is critical for forming an acyl-enzyme intermediate in the first step of the process. Three mutants (Cys122Ala, Cys122Ser, Cys122Gln) were created by site-directed mutagenesis. Plasmid-based expression of these mutants in S. glaucescens resulted in strains which generated 75 (Cys122Ala) to 500% (Cys122Gln) more straight-chain fatty acids (SCFA) than the corresponding wild-type strain. In contrast, plasmid-based expression of wild-type KASIII had no effect on fatty acid profiles. These observations are attributed to an uncoupling of the condensation and decarboxylation activities in these mutants (malonyl-ACP is thus converted to acetyl-ACP, a SCFA precursor). Incorporation experiments with perdeuterated acetic acid demonstrated that 9% of the palmitate pool of the wild-type strain was generated from an intact D(3) acetyl-CoA starter unit, compared to 3% in a strain expressing the Cys122Gln KASIII. These observations support the intermediacy of malonyl-ACP in generating the SCFA precursor in a strain expressing this mutant. To study malonyl-ACP decarboxylase activity in vitro, the KASIII mutants were expressed and purified as His-tagged proteins in Escherichia coli and assayed. In the absence of the acyl-CoA substrate the Cys122Gln mutant and wild-type KASIII were shown to have comparable decarboxylase activities in vitro. The Cys122Ala mutant exhibited higher activity. This activity was inhibited for all enzymes by the presence of high concentrations of isobutyryl-CoA (>100 microM), a branched-chain fatty acid biosynthetic precursor. Under these conditions the mutant enzymes had no activity, while the wild-type enzyme functioned as a ketoacyl synthase. These observations indicate the likely upper and lower limits of isobutyryl-CoA and related acyl-CoA concentrations within S. glaucescens.  相似文献   

7.
The microbial biosynthesis of free fatty acid, which can be used as precursors for the production of fuels or chemicals from renewable carbon sources, has attracted significant attention in recent years. Free fatty acids can be produced by introducing an acyl-carrier protein (ACP) thioesterase (TE) gene into Escherichia coli. The first committed step of fatty acid biosynthesis is the conversion of acetyl-CoA to malonyl-CoA by an adenosine triphosphate (ATP)-dependent acetyl-CoA carboxylase followed by the conversion of malonyl-CoA to malonyl-ACP through the enzyme malonyl CoA-acyl carrier protein transacylase (MCT; FabD). The E. coli fabD gene encoding MCT has been cloned and studied. However, the effect of FabD overexpression in a fatty acid overproducing strain has not been examined. In this study, we examined the effect of FabD overexpression in a fatty acid overproducing strain carrying an acyl-ACP TE. Specifically, the effect of overexpressing a fabD gene from four different organisms on fatty acid production was compared. The strains carrying a fabD gene from E. coli, Streptomyces avermitilis MA-4680, or Streptomyces coelicolor A3(2) improved the free fatty acid production; these three strains produced more free fatty acids, about 11% more, than the control strain. The strain carrying a fabD gene from Clostridium acetobutylicum ATCC 824, however, produced similar quantities of free fatty acids as the control strain. In addition, the three FabD overexpressed strains also have higher fatty acid/glucose yields. The results suggested that FabD overexpression can be used to improve free fatty acid production by increasing the malonyl-ACP availability.  相似文献   

8.
The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (~70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a ΔfabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.  相似文献   

9.
It was found that the partially purified beta-ketoacyl-ACP synthase of Bacillus insolitus did not require the addition of FabD (malonyl-CoA:ACP transacylase, MAT) for the activity assay. This study therefore examined the necessity of FabD protein for in vitro branched-chain fatty acid (BCFA) biosynthesis by crude fatty acid synthetases (FAS) of Bacilli. To discover the involvement of FabD in the BCFA biosynthesis, the protein was removed from the crude FAS by immunoprecipitation. The His-tag fusion protein FabD of Bacillus subtilis was expressed in Escherichia coli and used for the preparation of antibody. The rabbit antibody raised against the expressed fusion protein specifically recognized the FabD in the crude FAS of B. subtilis. Evaluation of the efficacy of the immunoprecipitation showed that a trace of FabD protein was present in the antibody-treated crude FAS. However, this complete removal of FabD from the crude FAS did not abolish its BCFA biosynthesis, but only reduced the level to 50-60% of the control level for acyl-CoA primer and to 80% for alpha-keto-beta-methylvalerate primer. Furthermore, the FabD concentration did not necessarily correlate with the MAT specific activity in the enzyme fractions, suggesting the presence of another enzyme source of MAT activity. This study, therefore, suggests that FabD is not the sole enzyme source of MAT for in vitro BCFA biosynthesis, and implies the existence of a functional connection between fatty acid biosynthesis and another metabolic pathway.  相似文献   

10.
Assays of beta-ketoacyl-acyl carrier protein synthases III (KASIII; FabH), a key enzyme initiating bacterial type II fatty acid biosynthesis, usually involve incubation of radiolabeled acetyl-coenzyme A and malonyl-acyl carrier protein (MACP). The radiolabeled acetoacetyl-ACP product is precipitated and separated from the substrate before quantitation. We have developed a scintillation proximity assay (SPA) where use of biotinylated MACP (BMACP) allows the generation of a biotinylated acetoacetyl-ACP. This product, when captured by the streptavidin-coated scintillant-impregnated microspheres, generates an SPA signal. A BMACP K(m) of 7.1 microM was determined using this SPA with the Streptomyces glaucescens FabH. A similar MACP K(m) (6 microM) was determined in a precipitation assay, demonstrating that BMACP is an effective substrate for FabH. IC(50) values of 15.2 microM (SPA) and 24.8 microM were obtained with iodoacetamide and the S. glaucescens FabH. Comparable IC(50) values of 160 microM (SPA) and 125 microM were also obtained with the antibiotic thiolactomycin and the Escherichia coli FabH. These observations demonstrate that FabH inhibitors can be readily detected using a SPA with BMACP and that the effectiveness of inhibitors in the SPA is comparable to that obtained using MACP and a standard TCA precipitation assay. A FabH SPA adaptable to high-throughput screening should facilitate the discovery of potential novel antibiotics.  相似文献   

11.
In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.  相似文献   

12.
The 3-ketoacyl-acyl carrier protein (ACP) synthase III from spinach was purified to homogeneity by an eight-step procedure that included an ACP-affinity column. The size of the native enzyme was M(r) = 63,000 based on gel filtration, and its subunit size was M(r) = 40,500 based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that 3-ketoacyl-ACP synthase III may be a homodimer. The purified enzyme was highly specific for acetyl-CoA and malonyl-ACP. The Km for acetyl-CoA was 5 microM when assayed in the presence of 10 microM malonyl-CoA. Acetyl-, butyryl-, and hexanoyl-ACP would not substitute for acetyl-CoA as substrates. The specificity for acetyl-CoA suggested that the physiological function of 3-ketoacyl-ACP synthase is to catalyze the initial condensation reaction in fatty acid biosynthesis. The homogeneous 3-ketoacyl-ACP synthase was capable of catalyzing acetyl-CoA:ACP transacylation but at a rate about 90-fold slower than the condensation reaction with malonyl-ACP. The 3-ketoacyl-ACP synthase was inhibited 100% by 5 mM N-ethylmaleimide or 20 mM sodium arsenite.  相似文献   

13.
Polyketide synthases cannot be functional unless their apo-acyl carrier proteins (apo-ACPs) are post-translationally modified by covalent attachment of the 4'-phosphopantetheine group to the highly conserved serine residue, and this reaction is catalyzed by phosphopantetheinyl transferases (PPTases). Cloning and sequence analysis of the 33-kb fredericamycin (FDM) biosynthetic gene cluster from Streptomyces griseus revealed fdmW, whose deduced gene product showed significant sequence homology to known PPTases. Biochemical characterization of FdmW in vitro confirmed that it is a PPTase. Inactivation of fdmW resulted in approximately 93% reduction of FDM production, and complementation of the fdmW::aac (3)IV mutant by expressing fdmW in trans restored FDM production to a level comparable with that of the wild-type strain. Although FdmW can phosphopantetheinylate various ACPs, it prefers its cognate substrate, the FdmH ACP, with a K(m) of 5.8 microM and a k(cat)/K(m) of 8.1 microM(-1) x min(-1), to heterologous ACPs, such as the TcmM ACP with a K(m) of 1.0 x 10(2) microM and a k(cat) /K(m) of 0.6 microM(-1) x min(-1). These findings suggest that FdmW is specific for FDM biosynthesis. FdmW therefore represents the first holo-ACP synthase-type PPTase identified from an aromatic polyketide biosynthetic gene cluster.  相似文献   

14.
The actinorhodin (act) minimal polyketide synthase (PKS) from Streptomyces coelicolor consists of three proteins: an acyl carrier protein (ACP) and two beta-ketoacyl ACP synthase components known as KSalpha and KSbeta. The act minimal PKS catalyzes at least 18 separate reactions which can be divided into loading, initiation, extension, and cyclization and release phases. Two quantitative kinetic assays were developed and used to measure individual rate and Michaelis constants for loading, initiation and extension steps. In the minimal PKS, the reaction between malonyl CoA and ACP to form malonyl ACP (loading) is the rate-limiting step (kcat = 0.49 min-1, KM = 207 microM). This reaction increases 5-fold in rate in the presence of KSalphaKSbeta (kcat = 2.3 min-1, KM = 215 microM). In the presence of S. coelicolor malonyl CoA:ACP transacylase (MCAT), the rate of loading increases and the kinetic parameters of malonyl-ACP as a substrate of KSalphaKSbeta can be measured (kcat = 20.6 min-1, KM = 2.4 microM). Under these conditions, it appears that decarboxylation of malonyl-ACP to form acetyl-ACP (initiation) is the rate-limiting step. When an excess of acetyl ACP is supplied, either chain extension, cyclization, or release steps become rate limiting (k approximately 60 min-1). No ACP-bound intermediates could be observed, suggesting that partially or fully extended chains do not accumulate because chain extension is rate limiting under these conditions and that cyclization and release are fast. apo-ACP acts as a mixed inhibitor of malonyl ACP binding to KSalpha/KSbeta (Kic = 50 microM, Kiu = 137 microM), but apo-ACP does not appear to inhibit MCAT.  相似文献   

15.
The acyl carrier protein (ACP) of the tetracenomycin C polyketide synthase, encoded by the tcmM gene, has been expressed in both Streptomyces glaucescens and Escherichia coli and purified to homogeneity. Expression of the tcmM gene in E. coli results mainly in the TcmM apo-ACP, whereas expression in S. glaucescens yields solely the holo-ACP. The purified holo-TcmM is active in a malonyl coenzyme A:ACP transacylase assay and is labeled by radioactive beta-alanine, confirming that it carries a 4'-phosphopantetheine prosthetic group.  相似文献   

16.
The Streptomyces glaucescens fabH gene, encoding β-ketoacyl-acyl carrier protein (β-ketoacyl-ACP) synthase (KAS) III (FabH), was overexpressed in Escherichia coli, and the resulting gene product was purified to homogeneity by metal chelate chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified protein revealed an Mr of 37,000, while gel filtration analysis determined a native Mr of 72,000 ± 3,000 (mean ± standard deviation), indicating that the enzyme is homodimeric. The purified recombinant protein demonstrated both KAS activity and acyl coenzyme A (acyl-CoA):ACP transacylase (ACAT) activity in a 1:0.12 ratio. The KAS and ACAT activities were both sensitive to thiolactomycin inhibition. The KAS activity of the protein demonstrated a Km value of 3.66 μM for the malonyl-ACP substrate and an unusual broad specificity for acyl-CoA substrates, with Km values of 2.4 μM for acetyl-CoA, 0.71 μM for butyryl-CoA, and 0.41 μM for isobutyryl-CoA. These data suggest that the S. glaucescens FabH is responsible for initiating both straight- and branched-chain fatty acid biosynthesis in Streptomyces and that the ratio of the various fatty acids produced by this organism will be dictated by the ratios of the various acyl-CoA substrates that can react with FabH. Results from a series of in vivo directed biosynthetic experiments in which the ratio of these acyl-CoA substrates was varied are consistent with this hypothesis. An additional set of in vivo experiments using thiolactomycin provides support for the role of FabH and further suggests that a FabH-independent pathway for straight-chain fatty acid biosynthesis operates in S. glaucescens.  相似文献   

17.
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce.  相似文献   

18.
The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; AT(L)-ACP(L)). The pikromycin TEII exhibited high K(m) values (>100 microm) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both AT(L)-ACP(L) (k(cat)/K(m) 3.3 +/- 1.1 m(-1) s(-1)) and PikAIII (k(cat)/K(m) 2.9 +/- 0.9 m(-1) s(-1)). The TEII exhibited some acyl-group specificity, catalyzing hydrolysis of propionyl (k(cat)/K(m) 15.8 +/- 1.8 m(-1) s(-1)) and butyryl (k(cat)/K(m) 17.5 +/- 2.1 m(-1) s(-1)) derivatives of AT(L)-ACP(L) faster than acetyl (k(cat)/K(m) 4.9 +/- 0.7 m(-1) s(-1)), malonyl (k(cat)/K(m) 3.9 +/- 0.5 m(-1) s(-1)), or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of AT(L)-ACP(L) at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.  相似文献   

19.
The source of malonyl groups for polyketide and fatty acid biosynthesis is malonyl CoA. During fatty acid and polyketide biosynthesis, malonyl groups are normally transferred to the acyl carrier protein (ACP) component of the synthase by a malonyl CoA:holo-ACP transacylase (MCAT) enzyme. The fatty acid synthase (FAS) malonyl CoA:ACP transacylase from Streptomyces coelicolor was expressed in Escherichia coli as a hexahistidine-tagged (His(6)) fusion protein in high yield. The His(6)-MCAT was purified to homogeneity using standard techniques, and kinetic analysis of the malonylation of S. coelicolorFAS holo-ACP, catalyzed by His(6)-MCAT, gave K(infinity) (M) values of 73 (ACP) and 60 microM (malonyl CoA). A catalytic constant k (infinity) (M) of 450 s(-1) and specificity constants k (infinity) (M)/K (infinity) (M) of 6.2 (ACP) and 7.5 microM(-1) s(-1) (malonyl CoA) were measured. Malonyl transfer to the E. coli FAS holo-ACP, catalyzed by His(6)-MCAT, was less efficient (k (infinity) (M)/K (infinity) (M) was 10% of that of the S. coelicolor ACP). Incubation of MCAT with the serine specific agent PMSF caused inhibition of malonyl transfer to FAS ACPs, and an S97A MCAT mutant was incapable of catalyzing malonyl transfer. Our results show that in the reaction with FAS holo-ACPs the S. coelicolor MCAT is very similar to the E. coli MCAT paradigm in terms of its kinetic mechanism and active site residues. These results indicate that no other active site nucleophile is involved in catalysis as has been suggested to explain recently reported observations.  相似文献   

20.
Bacterial beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called FabH) catalyzes the condensation and transacylation of acetyl-CoA with malonyl-ACP. In order to understand the mode of enzyme/substrate interaction and design small molecule inhibitors, we have expressed, purified, and crystallized a selenomethionyl-derivative of E. coli KAS III. Several lines of evidence confirmed that purified selenomethionyl KAS III was homogenous, stably folded, and enzymatically active. Dynamic light scattering, size exclusion chromatography, and mass spectrometry results indicated that selenomethionyl KAS III is a noncovalent homodimer. Diffraction quality crystals of selenomethionyl KAS III/acetyl-CoA complex, which grew overnight to a size of 0.2 mm(3), belonged to the tetragonal space group P4(1)2(1)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号