首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
ABSTRACT

This study aimed to examine the reliability and the time-of-day effect of the 505 change of direction (CoD), 10-m sprint, and change of direction deficit test (CoDD). At two different time of days, 39 young diurnally active physical education male students performed different physical tests: 505 CoD, and sprint tests. Measurements were taken at two separate testing sessions, i.e. in the morning (07:00–08:30 h) and early evening (17:00–18:30 h) in a randomized and counter-balanced setting on nonconsecutive days in 21 of them (21.5 ± 1.5 y of age). The results showed that the 505 CoD test, 10-m sprint, and CoDD performances were a reliable test, and performances were better in the evening the 505 CoD, 10-m sprint, and CoDD testing provided reliable and sensitive scores. In addition, phase 2 showed that CoD, speed, and CoDD are affected by the time of day.  相似文献   

2.
The aim of this study was to investigate the effect of natural Opuntia ficus-indica juice (OFIJ) supplementation on anaerobic performance at two times of day. Twenty-two healthy male subjects (20.91 ± 1.22; 21.00 ± 0.84 years) divided into two groups: Experimental group (EG: n = 11) and a control group (CG: n = 11) performed two tests-sessions (30-s of Wingate test (i.e. Peak power (PP), Mean power (MP)), Sargent jump test (SJT), sprint 10 m), before and after natural OFIJ supplementation at 07:00 h and 17:00 h. T-test showed that the OFIJ has a potent antioxidant capacity for capturing free radicals following the 22-diphenyl-1-picrylhydrazyl (DPPH) test (p < 0.05). Likewise, the ANOVA revealed that anaerobic performances were significantly higher at 17:00 h compared to 07:00 h around the peak of the temperature (p < 0.05) in both EG and CG before supplementation. Moreover, OFIJ lead an improvement of performances with (+2.09% at 07:00 h vs.+9.36% 17:00 h) for PP, (+11.29% at 07:00 h vs.+11.77% 17:00 h) for MP, (+9.42% at 07:00 h vs.+7.63% 17:00 h) for SJT in EG. The RPE scores on response to the Wingate test decrease after OFIJ supplementation (p < 0.01). For the sprint values, a significant improvement was after OFIJ (?7.10% at 07:00 h vs. ?6.45% 17:00 h). However, no change was observed for CG after supplementation. In conclusion, the natural OFIJ supplementation for two weeks appears to ameliorate the performance upon two times of day with great improvement observed in the evening during short-term maximal exercise given the higher muscle damage, inflammatory, and oxidative responses at this time of day. Thus, it’s necessary that athletes, coaches, and medical staff consider the positive effects of Opuntia ficus-indica to improve anaerobic performance.  相似文献   

3.
The aim of this study was to examine the effects of training at the same time of day on diurnal variations of technical ability and swimming performance, to provide some recommendations with regard to adjusting training hours in accord with the time of day of competitive events. Eighteen participants volunteered for this study, and these were randomly assigned to either a morning training group (MTG, who trained only between 07:00 and 08:00 h, n = 6), an evening training group (ETG, who trained only between 17:00 and 18:00 h, n = 6), or a control group (CG, did not train but participated in all tests, n = 6). Swimming performance and technical ability – (i) stroke parameters: swim velocity (V), stroke rate (SR), and stroke length (SL); and (ii) motor organization: arm stroke phases and arm coordination (Idc) – were recorded 2 weeks before and 2 weeks after an 8-week regular training period. For all participants, the morning and evening tests were scheduled at the same time of day as the morning and evening training sessions. After training, the major finding of this study was that both ETG and the CG showed significantly lower P, V, SR, phase (B), phase (C), and Idc values in the morning than in the evening. However, P, V, SR, phase (B), phase (C), and Idc of the MTG measured at 07:00 and 17:00 h did not differ. Thus, training at a specific time of day increased performance in MTG at this time and modified the diurnal variation of swim performance. This study indicates that training at a specific time of day can result in marked changes in both swimming performance and technical aspects of swimming. Furthermore, training in the morning improved morning swimming performance and its components, and the amplitude of the morning–evening difference decreased. Training in the evening improved swimming performance and its components more in the evening than the morning, and the amplitude of the morning–evening difference increased.  相似文献   

4.
The aim of this study was to examine the effect of time of day on soccer-specific skills and physiological and psychological parameters in children. Ten male children soccer players (age: 14.6?±?0.8 years; height: 1.63?±?0.4 m; body mass: 52.5?±?4.9 kg) performed two shooting accuracy tests before and after a 10?×?20-m dribbling sprint test with 20-s of passive recovery between repetitions. The measurements were taken at 08:00 h, 13:00 h, and 17:00 h in a randomized order. Mean heart rate (HR) was monitored during the dribbling test. At the beginning of each test session, blood pressure and intra-aural temperature were measured. Likewise, children were asked to complete the profile of mood state (POMS) and the Hooper Index questionnaires. Lactate concentration ([La]) was recorded at rest, post-fifth recovery periods and post-second accuracy test. Moreover, they indicate their rating of perceived exertion (RPE) score immediately at the end of each test session. The results of this study showed that dribbling performance was higher at 13:00 h and 17:00 h in comparison with 08:00 h (p?p?r?=?0.6, p?相似文献   

5.
The purpose of this study was to examine the time-of-day effects on the offensive capability and aerobic performance in football game in young subjects. In a randomized order, participants realized the Yo–Yo intermittent recovery test in two test sessions and a football game situations (two 15-min games), interspersed by a verbalization sequence (3 min) at 08:00 and 17:00 h on separate days. A recovery period of 24 h was permitted between two consecutive test sessions. The results revealed diurnal variations on the maximal aerobic velocity during the Yo–Yo test (MAV) and the oral temperature with higher values in the afternoon than morning (p < 0.05). Concerning offensive capability, the numbers of scored goals were significantly higher at 17:00 h in comparison with 08:00 h (p < 0.05). However, there was no significant difference between 08:00 and 17:00 h for the kicked balls (shooting parameter). In conclusion, our findings suggest that performance was improved in the evening and the parameters (shooting and Scored goals) can be used as a model to describe the offensive capacity in football game depending on the time of day.  相似文献   

6.
The aim of this study was to evaluate the effect of electrostimulation strength training (ES) and time-of-day on immune response and anaerobic performances during short-term maximal exercise. In randomized order, 24 active men divided into three groups: MTG (n=8): training times 07:00–08:00h; ETG (n=8): training times 17:00–18:00h; and CG (n=8) and were asked to perform a 30-s Wingate test (i.e. peak (PP), mean (MP)) and strength (1-RM) before (T0) and after four weeks of training (T1) at 08:00h and 18:00h. Our results showed that oral temperature, PP (p<0.05), MP (p<0.05), and Interleukine-6 levels (IL-6) (p<0.001) were significantly higher at 18:00h compared to 08:00h in all groups. However, 1-RM was not affected by the time-of-day (p>0.05). Likewise, IL-6 increased after exercise at T0 and T1 in CG, ETG, and MTG (p<0.001). Moreover, ES training leads an improvement in performances (p<0.05) with an increase in the tight circumference for the MTG (p<0.01) at the same time-of-training (08:00h) without affecting the immune response (p>0.05). In fact, the amplitude of variation was disappeared in MTG after ES. However, the ES did not affect the PP, MP, and 1-RM in ETG with no change in the tight circumference. A significant increase in IL-6 at the same time-of-training (p<0.05) was observed on ETG. For CG, no significant change was observed after ES compared with pre-training. In conclusion, ES training in the morning is a potent strategy to counteract the decrease in anaerobic performances without affecting inflammatory response compared to the evening training.  相似文献   

7.
The aim of this study was to examine the effects of 3 and 5 weeks of detraining after 14 weeks of resistance training at a specific time of day on performances during the squat jump (SJ) and the maximal voluntary contraction (MVC). Thirty-one healthy male physical education students (age: 23.1 ± 1.0 years; height: 176.1 ± 6.3 cm; weight: 74.9 ± 10.9 kg) were randomly assigned to either a morning training group (MTG, training between 07:00 and 08:00 h, n = 10), an evening training group (ETG, training between 17:00 and 18:00 h, n = 11) or a control group (CG, no training, n = 10). Participants then performed eight test sessions (twice per day, at 07:00 and 17:00 h) over the course of four phases: during pre-training, immediately post-training, and after 3 and 5 weeks of detraining. Before each test session, oral temperature was recorded. During the first 12 weeks of resistance training, participants performed 3 sets of 10 repetitions to failure (10-RM) for 4 exercises (squat, leg press, leg extension and leg curl, with 2 min of recovery between each exercise); during the last two weeks, training intensity increased to 8-RM with 3 min of recovery between each exercise. Oral temperature was significantly higher at 17:00 than 07:00 h during all test periods (p < 0.05). Likewise, SJ and MVC performances were significantly higher at 17:00 h than 07:00 h during all four test days in ETG and CG, and before training and 3 and 5 weeks after training in MTG (p < 0.05). For both training groups, most SJ and MVC performances (except MTG at 07:00 h and ETG at 17:00 h) returned to baseline values after 5, but not after 3, weeks of detraining. This study showed that 14 weeks of training at a specific time of day blunted the diurnal variation of MVC and SJ in the MTG. The improvement in performance brought about by resistance training was partially retained after 3 weeks of detraining (unless training had taken place at a non-habitual time of day) but was lost after 5 weeks of detraining. There was no effect of the time of training on core temperature.  相似文献   

8.
We investigated the effect of time‐of‐day on both maximal sprint power and repeated‐sprint ability (RSA). Nine volunteers (22±4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13±3 versus 11±3 mmol/L?1, p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958±112 vs. 915±133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5×6 sec test in the evening (11±2 vs. 7±3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time‐of‐day. This suggests that the beneficial effect of time‐of‐day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

9.
This study was designed to assess the effect of sport practice and warm-up duration on the morning–evening differences in muscle power and fatigue during performance of anaerobic exercise and perceptual responses to it. Twenty-two male physical education students – twelve trained (TG) (21.51 ± 1.25 years, 182.17 ± 4.37 cm and 82.88 ± 11.23 kg) and ten untrained (NTG) (23.89 ± 3.17 years, 176.8 ± 2.2 cm and 82.24 ± 8.43 kg) – participated in a crossover randomized study. They were asked to perform a 30-s Wingate test during six experimental sessions (three at 08:00 and three at 18:00 h) after different active warm-up (AWU) durations (5 min, 15 min, or 20 min). The AWU consisted of pedaling at a constant pace of 60 rpm against 50% of maximal aerobic power. Rate of perceived exertion (RPE) was recorded after the AWU and again immediately after the Wingate test. Heart rate and temperature (T) were recorded during each session at rest, after AWU and immediately at the end of the Wingate test. During the Wingate test, peak power (PP), mean power (MP), and the fatigue index were recorded. While the RPE estimations were higher in NTG, no time-of-day effect was recorded in either experimental group (morning or evening). T, PP, and MP were higher in the afternoon than in the morning (p < 0.001 for PP and MP; p < 0.05 for T). Similarly, PP and MP during the Wingate test were significantly higher in the TG than in the NTG (p < 0.001). The morning–evening difference of PP and MP was affected by AWU duration; AWU15 was best in the morning for improving lower limb power for both the TG and NTG, whereas reducing this period to 5 min in the evening was appropriate for TG only.  相似文献   

10.
11.
ABSTRACT

The aim of the present study was to examine the effect of a nap opportunity during the daytime realized at different times of day on physical and mental performance. Eighteen physically active males (age: 20.5 ± 3.0 years, height: 175.3 ± 5.9 cm, body-mass: 70.0 ± 8.6 kg) were tested under four experimental conditions: no-nap condition, nap at 13h00, nap at 14h00 and nap at 15h00. All nap durations were of 25-min and all tests were performed at 17h00. They performed a 5-m shuttle run test, which generated measures of the highest distance (HD) and total distance (TD). The rating of perceived exertion (RPE) was recorded after each of the six sprints in the 5-m shuttle run test. Vigilance was measured using a digit cancellation test. The results showed that TD at 17h00 was 4% greater after a nap at 14h00 than in the no-nap condition (+28 m, p < .05) or after the nap at 13h00 (+29 m, p < .05). HD was 8% higher (+9 m, p < .001) after a nap at 14h00 than in the no-nap condition and 7% higher after nap at 15h00 than in the no-nap condition (+7 m, p < .05). In addition, HD was 6% higher after nap at 14h00 (+7 m, p < .01) and 5% higher after nap at 15h00 (+9 m, p < .01) than HD after a nap at 13h00. Napping at 13h00 had no effect on physical performance at 17h00. No significant differences were observed between RPE and vigilance scores in the nap and no-nap conditions. In conclusion, napping for 25 min at 14h00 and 15h00 produces meaningful improvements in responses during repeated short-term maximal exercise tests performed at 17h00. Napping at 13h00 does not. Vigilance, as measured using a digit cancellation test, and RPE scores are not influenced by any of the nap opportunities.  相似文献   

12.
The purpose of this study was to investigate the effect of time of day and different modalities of recovery (active vs. passive recovery) after intermittent exercise in young soccer players. In randomized order, 16 boys participated in the study, divided into two groups: passive recovery (PRG, n?=?8) and active recovery (ARG, n?=?8). Both groups performed tests at 07:00 and 17:00 h. The results showed that performance in the Sargent jump test (SJT), 10-m sprint, and agility were higher in the evening (17:00 h), around the presumed peak of body temperature. SJT and agility performance decreased after the match. The better performance in SJT and agility were found in ARG rather than PRG (p?p?p?p?p?p?相似文献   

13.
The aim of this study was to document time of day-related changes in performances in sprint (a 20-m run) with standing and flying start as well as in eye-hand skill (ball-and-cup game) in school children. Sixty-three boys and 56 girls 9–11 years of age and considered to be healthy volunteered for the study. They were synchronized with a diurnal activity from 07: 00 to 21: 00 h and a nocturnal rest. Tests were performed at school at fixed clock hours; 08: 30, 10: 30, 13: 30, and 15: 30 h (10 min). Five different classes were involved: two of the same age participated in the sprint and three of different ages participated in the skill test. Analysis of variance was used for statistical analyses. For sprint with standing start, the best performances (higher speed) occurred at 10: 30 h (p < 0.002) and had a gender-related difference, boys performing better than girls (p < 0.001 to p < 0.00001). For sprint with flying start, a U-shaped curve pattern was obtained, with the highest performance at 08: 30 h (91% of all cases) and the lowest at 13: 30 h (p < 0.0004 and p < 0.0001); boys performed better than girls (p < 0.00004). For skill at the ball-and-cup game, the best performance occurred at 15: 40 h and the lowest at 08: 40 h (p < 0.001 to p < 0.00001); no gender-related difference was validated. Performance rates were lower for children 9.6 years of age than for children 10.6 years of age (p < 0.0001), but no sex differences were found. Thus, predictable diurnal changes in physical and skill performances were detected in studied children. However, differences between children of this age and adults are likely to exist with regard to peak time location and curve pattern. A class effect, presumably due to masking, was observed as well.  相似文献   

14.
Beliefs that lunar phases affect human physiology started in ancient times. Research has recently revealed that a physical fitness index increased in sedentary students at the new moon (NM) and full moon (FM) compared to other moon phases. However, the effect of lunar cycle (moon illumination and gravitational pull) on physical performance in athletes was not examined. Therefore, this study aimed to evaluate whether short-term explosive performance can be influenced by the different phases of the lunar cycle. Fourteen young male Taekwondo athletes (age: 16.9 ± 0.7 years, height: 159.7 ± 50.6 cm, body mass: 62.85 ± 7.84 kg) performed the following tests to assess the explosive physical performance during the different phases of the lunar cycle (NM, FQ (first quarter), FM, and LQ (last quarter)): maximal isometric manual contraction (dominant hand (MIMCD) and non-dominant hand (MIMCND)), maximal back isometric contraction (MBIC), squat jump (SJ), countermovement jump (CMJ), and 10-m sprint (10 m). The testing sessions during the different moon phases were performed in a counterbalanced order. The order of tests remained the same (MIMCD, MIMCND, MBIC, SJ, CMJ, and 10 m), and all sessions were performed in the evening (6:00 to 8:00 p.m.) on the first day of each evaluated lunar phase. Each parameter was measured over two consecutive lunar months in the calendar. Analysis of variance tests showed that there was no significant effect of lunar cycle on all explosive test measures, p > 0.05. Our results failed to identify any effect of lunar phase on evening explosive performance (mainly involving phosphagen pathway-based efforts) among young trained athletes. Therefore, it appears that moon phase/illumination does not affect short-term physical performance in young trained adolescents.  相似文献   

15.
The aim of this study was (i) to evaluate whether homocysteine (Hcy), total antioxidant status (TAS), and biological markers of muscle injury would be affected by time of day (TOD) in football players and (ii) to establish a relationship between diurnal variation of these biomarkers and the daytime rhythm of power and muscle fatigue during repeated sprint ability (RSA) exercise. In counterbalanced order, 12 football (soccer) players performed an RSA test (5?×?[6 s of maximal cycling sprint?+?24 s of rest]) on two different occasions: 07:00–08:30?h and 17:00–18:30?h. Fasting blood samples were collected from a forearm vein before and 3–5?min after each RSA test. Core temperature, rating of perceived exertion, and performances (i.e., Sprint 1, Sprint 2, and power decrease) during the RSA test were significantly higher at 17:00 than 07:00?h (p?<?.001, p?<?.05, and p?<?.05, respectively). The results also showed significant diurnal variation of resting Hcy levels and all biological markers of muscle injury with acrophases (peak times) observed at 17:00?h. These fluctuations persisted after the RSA test. However, biomarkers of antioxidant status' resting levels (i.e., total antioxidant status, uric acid, and total bilirubin) were higher in the morning. This TOD effect was suppressed after exercise for TAS and uric acid. In conclusion, the present study confirms diurnal variation of Hcy, selected biological markers of cellular damage, and antioxidant status in young football players. Also, the higher performances and muscle fatigue showed in the evening during RSA exercise might be due to higher levels of biological markers of muscle injury and lower antioxidant status at this TOD. (Author correspondence: )  相似文献   

16.
《Chronobiology international》2013,30(8):1139-1150
This study examines the effects of Ramadan fasting on performance during an intense exercise session performed at three different times of the day, i.e., 08:00, 18:00, and 21:00?h. The purpose was to determine the optimal time of the day to perform an acute high-intensity interval exercise during the Ramadan fasting month. After familiarization, nine trained athletes performed six 30-s Wingate anaerobic test (WAnT) cycle bouts followed by a time-to-exhaustion (Texh) cycle on six separate randomized and counterbalanced occasions. The three time-of-day nonfasting (control, CON) exercise sessions were performed before the Ramadan month, and the three corresponding time-of-day Ramadan fasting (RAM) exercise sessions were performed during the Ramadan month. Note that the 21:00?h session during Ramadan month was conducted in the nonfasted state after the breaking of the day's fast. Total work (TW) completed during the six WAnT bouts was significantly lower during RAM compared to CON for the 08:00 and 18:00?h (p?<?.017; effect size [d]?=?.55 [small] and .39 [small], respectively) sessions, but not for the 21:00?h (p?=?.03, d?=?.18 [trivial]) session. The Texh cycle duration was significantly shorter during RAM than CON in the 18:00 (p < .017, d?=?.93 [moderate]) session, but not in the 08:00 (p?=?.03, d?=?.57 [small]) and 21:00?h (p?=?.96, d?=?.02 [trivial]) sessions. In conclusion, Ramadan fasting had a small to moderate, negative impact on quality of performance during an acute high-intensity exercise session, particularly during the period of the daytime fast. The optimal time to conduct an acute high-intensity exercise session during the Ramadan fasting month is in the evening, after the breaking of the day's fast. (Author correspondence: )  相似文献   

17.
The aim of the present study was to evaluate the effects of caffeine ingestion and partial sleep deprivation at the end of night on cognitive and physical performance. In randomised order, fourteen football players (age: 23.57 ± 1.98 years; body weight: 59.57 ± 4.29 kg; height: 174.35 ± 5.07 cm) completed four test sessions at 08:00 h: after placebo or 3 mg·kg?1 of caffeine ingestion during a reference night, RN (bed time: from 22:30 h to 07:00 h) or a night of partial sleep deprivation, PSD (bed time: from 22:30 h to 03:00 h). During each test session, participants assessed vigilance and reaction times and performed a series of tests: cancelation test, squat jumps (SJ), and the 30-s Wingate test (for the measurement of peak power, PP, and mean power, PM). During RN, results showed that PP, PM, SJ, and vigilance increased after caffeine ingestion in comparison with placebo (p < 0.001). Moreover, both simple and choice reactions were significantly better after caffeine ingestion in comparison with placebo ingestion (p < 0.05 and p < 0.001, respectively). Results showed that reaction time, vigilance, and SJ were affected by PSD, even though PP, PM, and SJ were not affected, the following day at 08:00 h. During the PSD condition, PP, PM, SJ, and vigilance were significantly higher after caffeine ingestion in comparison with placebo ingestion (p < 0.001). However, both simple and choice reaction times were significantly poorer during PSD in comparison with RN (p < 0.05 and p < 0.001, respectively). Therefore, ingesting caffeine is an effective strategy to maintain physical and cognitive performances after PSD.  相似文献   

18.
The present study was designed to investigate if the suggested greater fatigability during repeated exercise in the afternoon, compared to the morning, represents a true time-of-day effect on fatigability or a consequence of a higher initial power. In a counterbalanced order, eight subjects performed a repeated-sprint test [10?×?(6 s of maximal cycling sprint?+?30 s of rest)] on three different occasions between: 08:00–10:00, 17:00–19:00, and 17:00-19:00?h controlled (17:00–19:00?hcont, i.e., initial power controlled to be the same as the two first sprints of the 08:00–10:00?h trial). Power output was significantly (p?<?0.05) higher for sprints 1, 2, and 3 in the afternoon than in the morning (e.g., sprint 1: 23.3 ±1 versus 21.2 ±1 W·kg?1), but power decrement for the 10 sprints was also higher in the afternoon. Based on the following observations, we conclude that this higher power decrement is a consequence of the higher initial power output in the afternoon. First, there was no difference in power during the final five sprints (e.g., 20.4 ±1 versus 19.7 ±1 W·kg?1 for sprint 10 in the afternoon and morning, respectively). Second, the greater decrement in the afternoon was no longer present when participants were producing the same initial power output in the afternoon as in the morning. Third, electromyographic activity of the vastus lateralis decreased during the exercise (p?<?0.05), but without a time-of-day effect. (Author correspondence: )  相似文献   

19.
The objectives of this study were to examine the effects of a moderate intensity strength training on changes in critical velocity (CV), anaerobic running distance (D''), sprint performance and Yo-Yo intermittent running test (Yo-Yo IR1) performances. Methods: two recreational soccer teams were divided in a soccer training only group (SO; n = 13) and a strength and soccer training group (ST; n = 13). Both groups were tested for values of CV, D'', Yo-Yo IR1 distance and 30-m sprint time on two separate occasions (pre and post intervention). The ST group performed a concurrent 6-week upper and lower body strength and soccer training, whilst the SO group performed a soccer only training. Results: after the re-test of all variables, the ST demonstrated significant improvements for both, YoYo IR1 distance (p = 0.002) and CV values (p<0.001) with no significant changes in the SO group. 30-m sprint performance were slightly improved in the ST group with significantly decreased performance times identified in the SO group (p<0.001). Values for D'' were slightly reduced in both groups (ST -44.5 m, 95% CI = -90.6 to 1.6; SO -42.6 m, 95% CI = -88.7 to 3.5). Conclusions: combining a 6-week moderate strength training with soccer training significantly improves CV, Yo-Yo IR1 whilst moderately improving 30-m sprint performances in non-previously resistance trained male soccer players. Critical Velocity can be recommended to coaches as an additional valid testing tool in soccer.  相似文献   

20.
Eating during the night may increase the risk for obesity and type 2 diabetes in shift workers. This study examined the impact of either eating or not eating a meal at night on glucose metabolism. Participants underwent four nights of simulated night work (SW1–4, 16:00–10:00 h, <50 lux) with a daytime sleep opportunity each day (10:00–16:00 h, <3 lux). Healthy males were assigned to an eating at night (NE; n = 4, meals; 07:00, 19:00 and 01:30 h) or not eating at night (NEN; n = 7, meals; 07:00 h, 09:30, 16:10 and 19:00 h) condition. Meal tolerance tests were conducted post breakfast on pre-night shift (PRE), SW4 and following return to day shift (RTDS), and glucose and insulin area under the curve (AUC) were calculated. Mixed-effects ANOVAs were used with fixed effects of condition and day, and their interactions, and a random effect of subject identifier on the intercept. Fasting glucose and insulin were not altered by day or condition. There were significant effects of day and condition × day (both < 0.001) for glucose AUC, with increased glucose AUC observed solely in the NE condition from PRE to SW4 (= 0.05) and PRE to RTDS (< 0.001). There was also a significant effect of day (= 0.007) but not condition × day (= 0.825) for insulin AUC, with increased insulin from PRE to RTDS in both eating at night (= 0.040) and not eating at night (= 0.006) conditions. Results in this small, healthy sample suggest that not eating at night may limit the metabolic consequences of simulated night work. Further study is needed to explore whether matching food intake to the biological clock could reduce the burden of type 2 diabetes in shift workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号