首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
1. Food preference, consumption and growth of Tipula lateralis feeding on leaves of one exotic (Eucalyptus globulus) and three native trees of central Portugal (Alnus glutinosa, Castanea saliva and Quercus faginea) were investigated. 2. Larvae preferred and consumed more alder than the other three species. Larvae fed oak and eucalyptus did not grow, while those fed alder had a faster mean specific growth than those fed chestnut. Alder also provided a higher and earlier peak growth rate, which occurred at 35 days vs. 91 days for chestnut. 3. High values of survivorship to 126 days were observed in larvae fed alder and chestnut. All larvae fed oak died within 63 days; those fed eucalyptus died within 91 days. 4. Leaf utilization by Tipula lateralis seems to be negatively correlated with cuticle thickness and polyphenolic content and positively correlated with microbial colonization and nutrient content of the leaves. We hypothesize that the replacement of the original deciduous forest by eucalyptus plantations may induce deleterious changes in the associated invertebrate communities and stream ecosystem processes.  相似文献   

2.
Eutrophication is a major threat to freshwater ecosystems worldwide that affects aquatic biota and compromises ecosystem functioning. In this study, we assessed the potential use of leaf decomposition and associated decomposer communities to predict stream eutrophication. Because leaf quality is expected to affect leaf decomposition, we used five leaf species, differing in their initial nitrogen concentration. Leaves of alder, chestnut, plane, oak and eucalyptus were placed in coarse-mesh bags and immersed in six streams along an eutrophication gradient to assess leaf decomposition and the structure of associated decomposer communities. A hump-shaped relationship was established between leaf decomposition and the eutrophication gradient for all leaf species, except for eucalyptus. Invertebrate biomass and density as well as fungal biomass and sporulation were lowest at the extremes of the gradient. Leaf-associated invertebrate and fungal assemblages were mainly structured by stream eutrophication. The percentage of shredders on leaves decreased, whereas the percentage of oligochaeta increased along the eutrophication gradient. The Iberian Biological Monitoring Working Party Index (IBMWP) applied to benthic invertebrates increased from oligotrophic to moderately eutrophic streams and then dropped sharply at highly and hypertrophic streams. Overall, leaf decomposition was a valuable tool to assess changes in stream water quality, and it allowed the discrimination of sites classified by the IBMWP within class I and class IV. Moreover, decomposition of most leaf species responded in a similar way to eutrophication when decomposition was normalized by the quality of leaves.  相似文献   

3.
SUMMARY 1. Breakdown of wood was compared at three sites of the Agüera catchment (Iberian Peninsula): two oligotrophic first‐order reaches (one under deciduous forest, the other under Eucalyptus globulus plantations) and one third‐order reach under mixed forest, where concentration of dissolved nutrients was higher. 2. Branches (diameter = 3 cm, length = 10 cm) of oak (Quercus robur), alder (Alnus glutinosa), pine (Pinus radiata) and eucalyptus, plus prisms (2.5 × 2.5 × 10 cm) of alder heartwood were enclosed in mesh bags (1 cm mesh size) and placed in the streams. Mass loss was determined over 4.5 years, whereas nutrient, lignin and ergosterol were determined over 3 years. In order to describe fungal dynamics, ergosterol was also determined separately on the outer and inner parts of some branches. 3. Breakdown rates ranged from 0.0159 to 0.2706 year?1 with the third‐order reach having the highest values whatever the species considered. The most rapid breakdown occurred in alder heartwood and the slowest in pine branches; breakdown rates of oak, eucalyptus and alder branches did not differ significantly. 4. The highest nitrogen and phosphorus contents were found in alder, followed by oak, while pine and eucalyptus had low values. During breakdown, all materials rapidly lost phosphorus, but nitrogen content remained constant or slightly increased. Lignin content remained similar. 5. Peaks of ergosterol ranged from 0.023 to 0.139 mg g?1 and were higher in alder than in other species in two of the three sites. The third‐order reach generally had the greatest increase in ergosterol, especially in alder branches, eucalyptus and alder heartwood. The overall species/site pattern of fungal biomass was thus consistent with the observed differences in breakdown. 6. When compared with leaves of the same species decomposing at these sites, wood breakdown appeared to be less sensitive to the tree species but more sensitive to stream water chemistry. Although wood breakdown is slower and its inputs are lower than those of leaf litter, its higher resistance to downstream transport results in a relatively high standing stock and a significant contribution to the energy flux.  相似文献   

4.
We examined the potential long-term impacts of riparian plant diversity loss on diversity and activity of aquatic microbial decomposers. Microbial assemblages were obtained in a mixed-forest stream by immersion of mesh bags containing three leaf species (alder, oak and eucalyptus), commonly found in riparian corridors of Iberian streams. Simulation of species loss was done in microcosms by including a set of all leaf species, retrieved from the stream, and non-colonized leaves of three, two or one leaf species. Leaves were renewed every month throughout six months, and microbial inoculum was ensured by a set of colonized leaves from the previous month. Microbial diversity, leaf mass loss and fungal biomass were assessed at the second and sixth months after plant species loss. Molecular diversity of fungi and bacteria, as the total number of operational taxonomic units per leaf diversity treatment, decreased with leaf diversity loss. Fungal biomass tended to decrease linearly with leaf species loss on oak and eucalyptus, suggesting more pronounced effects of leaf diversity on lower quality leaves. Decomposition of alder and eucalyptus leaves was affected by leaf species identity, mainly after longer times following diversity loss. Leaf decomposition of alder decreased when mixed with eucalyptus, while decomposition of eucalyptus decreased in mixtures with oak. Results suggest that the effects of leaf diversity on microbial decomposers depended on leaf species number and also on which species were lost from the system, especially after longer times. This may have implications for the management of riparian forests to maintain stream ecosystem functioning.  相似文献   

5.
Abstract Herein we assess the importance of leaf cuticle, polyphenolic, and essential oils contents of Eucalyptus globulus leaves to hyphomycete colonization and shredder consumption. Optical and electron microscopy revealed that, at least during the first 5 weeks of conditioning, the cuticle remains virtually intact. Stomata provide the main access for hyphae to internal leaf tissues and, eventually, for spore release. We suggest that in E. globulus leaves, fungal decomposition progresses predominantly in and from the eucalyptus leaf mesophyll to the outside. Malt extract agar media supplemented with either eucalyptus essential oils or tannic acid completely inhibited (Articulospora tetracladia, Lemonniera aquatica, and Tricladium gracile) or depressed (Heliscus lugdunensis, Lunulospora curvula, and Tricladium angulatum) aquatic hyphomycetes growth. The transference of both secondary compounds to alder leaves induced similar and significant reduction in Tipula lateralis larval consumption. Results consistently indicate that eucalyptus oils are stronger deterrents than polyphenols. The waxy cuticle of E. globulus appears to be a key physical factor delaying fungal colonization during decomposition. We hypothesize that the relative influence of leaf phenols and essential oils to aquatic hyphomycetes and shredders may be related to three main factors: (a) initial distribution of such compounds in the leaves; (b) possibility of their decrease through decomposition; and (c) consumption strategies of detritivores. Received: 8 July 1998; Accepted: 21 December 1998  相似文献   

6.
This study evaluated if there are differences in leaf breakdown and invertebrate colonization among tree species differing in quality (toughness), and which factors could influence these differences. Common alder leaves decomposed significantly faster then either sweet chestnut or Spanish oak (k values of –0.0332, –0.0108, and –0.0112, respectively) during the first 2 months. Shredder abundance was highest when leaf mass remaining was 50%, and the samples clustered in mixed groups of sampling dates and leaf species, suggesting that stage of decomposition was an important factor influencing shredder colonization. During the first two months of decomposition, the physicochemical characteristics of leaf litter and the interaction between leaf toughness and the occurrence of frequent spates seemed to be the main factors affecting leaf breakdown rates in the stream. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Previous work in terrestrial and aquatic ecosystems has suggested that the relationship between breakdown rates of leaf litter and plant species richness may change unpredictability due to non‐additive effects mediated by the presence of key‐species. By using single‐ and mixed‐species leaf bags (7 possible combinations of three litter species differing in toughness; common alder [Alnus glutinosa ], sweet chestnut [Castanea sativa ], and Spanish oak [Quercus ilex ilex ]), I tested whether leaf species diversity, measured as richness and composition, affects breakdown dynamics and macroinvertebrate colonization (abundance, richness and composition) during 90 days incubation in a stream. Decomposition rates were additive, i.e., observed decomposition rates were not different from expected ones. However, decomposition rates of individual leaf species were affected by the mixture, i.e., there were species‐specific responses to mixing litter. The invertebrate communities colonizing the mixtures were not richer and more diverse in mixtures than in single‐species leaf bags. On the opposite, mixing leaf species had a negative, non‐additive effect on rates of shredder and taxa colonization and on macroinvertebrate diversity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
We conducted a decomposition experiment using green and senescent maple and alder leaves in a coastal headwater stream in Hokkaido, northern Japan, during June and July 2000. We estimated whether shredder colonization on the leaves and leaf breakdown differed between green and senescent leaves during the experimental period. Late-instar Lepidostoma complicatum (Trichoptera) and Sternomoera rhyaca (Amphipoda) were the predominant shredder taxa among the macroinvertebrates that colonized litterbags. There was no significant difference in shredder colonization between green and senescent leaves although we found a significant difference between maple and alder leaves. The colonization patterns of large individuals of L. complicatum and S. rhyaca differed from those of small individuals. All decomposition coefficients of green and senescent leaves were high. During the experiment, decomposition was significantly faster in maple than in alder leaves, although no significant difference was found between green and senescent leaves. However, the fragmented nitrogen portion was higher in green leaves than in senescent leaves during the experiment. Higher nitrogen release (2–2.5 times more) as particulate organic matter in green than in senescent leaves indicates that green leaves may be a potentially valuable food resource for other macroinvertebrate collector–gatherer species.  相似文献   

10.
1. We investigated the effect of moderate eutrophication on leaf litter decomposition and associated invertebrates in five reference and five eutrophied streams in central Portugal. Fungal parameters and litter N and P dynamics were followed in one pair of streams. Benthic invertebrate parameters that are considered useful in bioassessment were estimated in all streams. Finally, we evaluated the utility of decomposition as a tool to assess stream ecosystem functional integrity. 2. Decomposition of alder and oak leaves in coarse mesh bags was on average 2.3–2.7× faster in eutrophied than in reference streams. This was attributed to stimulation of fungal activity (fungal biomass accrual and sporulation of aquatic hyphomycetes) by dissolved nutrients. These effects were more pronounced for oak litter (lower quality substrate) than alder. N content of leaf litter did not differ between stream types, while P accrual was higher in the eutrophied than in the reference stream. Total invertebrate abundances and richness associated with oak litter, but not with alder, were higher in eutrophied streams. 3. We found only positive correlations between stream nutrients (DIN and SRP) and leaf litter decomposition rates in both fine and coarse mesh bags, associated sporulation rates of aquatic hyphomycetes and, in some cases, total invertebrate abundances and richness. 4. Some metrics based on benthic invertebrate community data (e.g. % shredders, % shredder taxa) were significantly lower in eutrophied than in reference streams, whereas the IBMWP index that is specifically designed for the Iberian peninsula classified all 10 streams in the highest possible class as having ‘very good’ ecological conditions. 5. Leaf litter decomposition was sufficiently sensitive to respond to low levels of eutrophication and could be a useful functional measure to complement assessment programmes based on structural parameters.  相似文献   

11.
1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.  相似文献   

12.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   

13.
Summary The colonization-pattern of aquatic Hyphomycetes on five-gram leaf packs of oak and alder submerged in a stream was quantified and compared. There were three series of alder leaves, submerged two weeks apart, and one series of oak. Colonization of leaves by pectolytic bacteria was also measured. There were marked similarities in the colonization of all four series. Total spore counts/g dry wt of leaf rose to a peak followed by a decline. The time taken to peak colonization was slower in oak than in alder, and in alder depended on the level of inoculum in the stream, as did the extent of colonization. Pectolytic bacteria counts followed the pattern of total spore counts, suggesting the exploitation of the same substrates by bacteria and fungi. Temperature and micro-environmental factors influence the overall rate of leaf degradation. Alder I was skeletonized in 10 wks, Alders II and III in 12 wks and oak in 25 wks.The resource was shown to have an upper limit of microbial colonization, and within this unit-community of microbes, there was an association of four dominant species of aquatic Hyphomycetes, together with about ten occasional species. The dominant species are subject to selection from the inoculum available in the stream and the formation and maintenance of the association appears to be the result of competitive interactions between species which results in a dynamic equilibrium. There is a low degree of resource specificity. The species equilibrium is 14 for all series, and species numbers are initially low, rise to a peak, then tend to decline. There is a taxonomic similarity of about 60% between successive stands of all series and between matched stands of alder.  相似文献   

14.
Japanese knotweed (Fallopia japonica Houtt. Ronse Decrane ) is a highly invasive exotic plant that forms monocultures in riparian areas, effectively reducing plant diversity. This change in riparian plant composition alters the allocthonous input of leaf litter into adjacent streams. A field experiment was completed to understand how leaf decomposition and macroinvertebrate colonisation associated with the incorporation of exotic leaf litter. Leaf packs of Japanese knotweed, native alder (Alnus incana L.), native cottonwood (Populus trichocarpa Torr . and Gray ), and two additional mixed pack types (alder and cottonwood; alder, cottonwood, and Japanese knotweed) were placed into a 50 m stream reach in Clear Creek, Idaho, and removed over a three‐month period. Leaf decomposition and macroinvertebrate assemblages were similar between leaf types, despite differences in nitrogen and phosphorus content. The diversity of leaf types within a given leaf pack also had no effect on leaf decomposition or macroinvertebrate dynamics. These findings suggest that allochthonous inputs of Japanese knotweed fulfill a detrital function similar to that of native leaf litter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
Rouse  Greg W. 《Hydrobiologia》2005,549(1):167-178
This paper provides data on fine particulate organic matter (FPOM) and macroinvertebrates associated to natural and artificial leaf packs in a small woodland stream (Schlaube, Brandenburg). Macroinvertebrate colonisation and the dynamics of FPOM were studied in oven-dried alder leaf packs, air-dried alder leaf packs and packs with artificial leafshaped substrate exposed in the stream during a 68-day period. The importance of FPOM as a potential food source for macroinvertebrates especially in artificial leaf packs was evaluated. Changes in the quantity as well as in the chemical composition of the accumulating FPOM (>63 and <63 μm) was determined using soluble carbohydrates, proteins and chlorophyll a as parameters of the nutritional quality. Mass loss and the chemical changes of alder leaves during the decompositional process were also described. The loss of soluble carbohydrates due to leaching was more rapid in oven-dried alder leaf packs than in air-dried ones. After 3 days of leaf pack exposure weight loss of oven-dried and air-dried leaf packs was nearly comparable, as the similar decay coefficients, k = 0.0228 (oven-dried leaf packs) and k = 0.0214 (air-dried leaf packs), respectively, show. The amount of FPOM per unit leaf area constantly increased in artificial packs, although it remained below that of alder leaf packs at all sampling dates. The nutritional quality of FPOM <63 μm was constantly greater than that of FPOM >63 μm and decreased in both size-fractions with length of exposure. Referring to leaf area the abundance of macroinvertebrates continually increased in all packs till the end of exposure, whereas the numbers in artificial packs remained below that in alder leaf packs. The taxonomic composition of all treatments was very similar with Gammarus pulex being the most abundant taxon in all packs until day 42, while afterwards the caddis fly genus Hydropsyche gained in importance. The amphipod Gammarus pulex in general did not show a preference for air-dried alder leaf packs compared to oven-dried alder leaf and artificial packs. Corresponding dynamics of macroinvertebrate colonisation and FPOM content in artificial packs support the hypothesis that FPOM functions not only as an important food source for macroinvertebrates including gammarideans but also as a control mechanism of macroinvertebrate abundance in stream habitats. Even if the accumulation of FPOM and drifting macroinvertebrates might be influenced by the same abiotic factor (e.g. by reduction in stream velocity inside the packs) it is quite unlikely that only physical properties caused the invertebrates to stay.  相似文献   

17.
Ferreira V  Gulis V  Graça MA 《Oecologia》2006,149(4):718-729
We assessed the effect of whole-stream nitrate enrichment on decomposition of three substrates differing in nutrient quality (alder and oak leaves and balsa veneers) and associated fungi and invertebrates. During the 3-month nitrate enrichment of a headwater stream in central Portugal, litter was incubated in the reference site (mean NO3-N 82 μg l−1) and four enriched sites along the nitrate gradient (214–983 μg NO3-N l−1). A similar decomposition experiment was also carried out in the same sites at ambient nutrient conditions the following year (33–104 μg NO3-N l−1). Decomposition rates and sporulation of aquatic hyphomycetes associated with litter were determined in both experiments, whereas N and P content of litter, associated fungal biomass and invertebrates were followed only during the nitrate addition experiment. Nitrate enrichment stimulated decomposition of oak leaves and balsa veneers, fungal biomass accrual on alder leaves and balsa veneers and sporulation of aquatic hyphomycetes on all substrates. Nitrate concentration in stream water showed a strong asymptotic relationship (Michaelis–Menten-type saturation model) with temperature-adjusted decomposition rates and percentage initial litter mass converted into aquatic hyphomycete conidia for all substrates. Fungal communities did not differ significantly among sites but some species showed substrate preferences. Nevertheless, certain species were sensitive to nitrogen concentration in water by increasing or decreasing their sporulation rate accordingly. N and P content of litter and abundances or richness of litter-associated invertebrates were not affected by nitrate addition. It appears that microbial nitrogen demands can be met at relatively low levels of dissolved nitrate, suggesting that even minor increases in nitrogen in streams due to, e.g., anthropogenic eutrophication may lead to significant shifts in microbial dynamics and ecosystem functioning. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
The decomposition of the roots (0–2 mm, 2–5 mm and 5–10 mm) of black alder (Alnus glutinosa (L.) Gaertn.) and hybrid poplar (Populus nigra L. X Populus trichocarpa Torr & Gray) was followed over a 462-day period in pure and mixed plantings in southern Quebec. Small roots of alder had the highest initial concentrations of nitrogen and lignin, and lost 9 and 10% less mass than medium and large roots, respectively. Large roots of poplar had the highest lignin-to-nitrogen ratio and showed the smallest loss of mass over the total incubation period. Slow root decomposition of black alder and hybrid poplar was characterized by a greater proportion of initial root nitrogen immobilized per unit of carbon respired. Lignin concentration in roots of alder and poplar increased rapidly at the beginning of the incubation. Our results suggest that high levels of nitrogen in roots of alder could contribute in slowing the rate of decomposition by allowing the formation of nitrogen-lignin derivatives and low levels of nitrogen in roots of poplar may limit the growth of microorganisms and the rate of root decomposition. A multiple regression was developed using initial nitrogen, lignin concentration and the ratio of lignin to nitrogen to produce an index of the rate of root decomposition. The correlation between the index values and the percentage of residual root mass was significant (r=0.98, p<0.01).  相似文献   

19.
We investigated how fungal decomposer (aquatic hyphomycetes) communities colonizing alder and eucalyptus leaf litter respond to changes in habitat characteristics (transplantation experiment). We examined the breakdown of leaf materials and the associated fungal communities at two contrasting sites, a headwater stream (H) and a midreach (M). Agroforestry increased from headwater to midreach. One month after the start of experiments at both sites, some leaf samples from the midreach site were transplanted to the headwater site (M–H treatment). Although both sites showed similar dissolved inorganic nutrient concentrations, eucalyptus leaves initially incubated at the midreach site (M, M–H) increased their breakdown rate compared to those incubated along the experiment at the headwater site (H). Alder breakdown rate was not enhanced, suggesting that their consumption was not limited by nutrient availability. Sporulation rates clearly differed between leaf types (alder > eucalyptus) and streams (H > M), but no transplantation effect was detected. When comparing conidial assemblages after transplantation, an inoculum effect (persistence of early colonizing species) was clear in both leaf species. Substrate preference and shifts in the relative importance of some fungal species along the process were also observed. Overall, our results support the determining role of the initial conditioning phase on the whole litter breakdown process, highlighting the importance of intrinsic leaf characteristics and those of the incubation habitat.  相似文献   

20.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号