首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The real-time kinetics of the release of ascorbyl free radicals in the coronary perfusate from isolated rat hearts submitted to an ischemia/reperfusion sequence has been achieved by continuous-flow ESR using high-speed acquisition techniques. Enhanced ESR detection of ascorbyl free radicals was obtained by addition of dimethyl sulfoxide (Me2SO), a strong cation chelator and oxidizing agent. A continuous-flow device allowed a direct monitoring of the ascorbyl free radical and/or ascorbate leakage in coronary perfusate by observation of the ascorbyl radical doublet (aH = 0.188 mT and g = 2.0054). 1. The results showed that ascorbyl free radical release occurred mainly during sequences of low-flow ischemia (90 min) coupled or not with 30 min of zero-flow ischemia followed by reperfusion (60 min). The kinetic profiles of ascorbyl-free-radical detection confirm in quantitative terms the expected correlation between the duration of the ischemic insult and the magnitude of ascorbate extracellular release upon reperfusion. There is indication that ascorbyl free radical depletion could be secondary to oxygen-derived-free-radical-induced cellular damage. 2. The amount of residual ascorbic acid was quantitated on myocardial tissue at the end of reperfusion using Me2SO as extracting solvent. Intense oxidation of ascorbate and chemical stabilization of the resulting free radical species provided by Me2SO allowed ESR measurement of a marked tissue ascorbate depletion related to the duration of ischemia. 3. Perfusion of superoxide dismutase during low-flow ischemia and the first 10 min of reperfusion greatly inhibited both extracellular release and endogenous ascorbate depletion. These results suggest that the ascorbate redox system constitutes a major protective mechanism against free-radical-induced myocardial injury. 4. The proposed direct ESR detection of ascorbyl free radicals in the coronary perfusates or in tissue extracts does not require extensive chemical preparation and conditioning of effluent or tissue samples. It provides an interesting straightforward alternative to the evaluation of detrimental free radical processes affecting the myocardium during ischemia and reperfusion.  相似文献   

2.
Reperfusion injury of ischemic organs is suggested to result from metabolic derangements initiating an imbalanced formation of free oxygen radicals. Most investigators in this field have used the spin-trap 5,5'-dimethyl-N-pyrroline-N-oxide (DMPO) to stabilize these short-lived radicals and make them visible by means of the electron spin resonance (ESR) technique. ESR signals obtained from intravascular DMPO were reported to indicate the formation of free OH. radicals and, in some cases, also carbon-centered radicals. We were unable to confirm these findings. Carbon-centered radicals were not obtained irrespectively of conditions studied, while oxygen-centered DMPO-adducts could only be detected in minor amounts. Instead, we observed an ascorbyl-related ESR signal. The addition of ethylenediaminetetraacetic acid (EDTA), which was used by many investigators in this field, was found to greatly influence ESR-spectra of the reperfusion fluid. The ascorbyl radical concentration was clearly reduced and the DMPO-OH. adduct became more prominent. The addition of iron further stimulated this change eliciting a Fenton-type reaction responsible for DMPO-OH.-related ESR spectra in the perfusate after ischemia. Accordingly, we observed the release of iron and ascorbic acid into the perfusate as a consequence of ischemia. We could demonstrate that iron in the presence of ascorbate and EDTA causes both types of radicals detected in the perfusate. DMPO-OH. generation in the presence of EDTA was found to result from free OH. radicals that were not generated in the absence of EDTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Traumatic brain injury (TBI) is one of the important causes of mortality and morbidity. The pathogenesis of the underlying brain dysfunction is poorly understood. Recent data have suggested that oxygen free radicals play a key role in the primary and secondary processes of acute TBI. We report direct electron spin resonance (ESR) evidence of hydroxyl (·OH) radical generation in closed-head injury of rats. Moderate brain concussion was produced by controlled and reproducible mechanical, fixed, closed-head injury. A cortical cup was placed over one cerebral hemisphere within 20 min of the concussion, perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent pyridyl-N-oxide-tert-butyl nitrone (POBN, 100 mM), and superfusate samples collected at 10 min intervals for a duration up to 130 min post brain trauma. In addition, POBN was administered systematically (50 mg/kg body wt.) 10 min pretrauma and 20 min posttrauma to improve our ability to detect free radicals. ESR analysis of the superfusate samples revealed six line spectra (N = 15.4 and βH = 2.5 G) characteristic of POBN-OH radical adducts, the intensity of which peaked 40 min posttrauma. The signal was undetectable after 120 min. Administration of -phenyl-tert-butyl-nitrone (PBN), a spin adduct forming agent systemically (100 mg/kg body wt. IP 10 min prior to concussion) alone or along with topical PBN (100 mM PBN in aCSF),6significantly (P< 0.001) attenuated the ESR signal, suggesting its possible role in the treatment of TBI.  相似文献   

4.
To mimic exercise-induced events such as energetic impairment, free radical generation, and lipid peroxidation in vitro, mouse-derived C2C12 myotubes were submitted to the inhibition of glycolytic and/or oxidative metabolism with 1 mM iodoacetate (IAA) and/or 2 mM sodium cyanide (CN), respectively, under 5% CO2/95% air up to 180 min. Electron spin resonance (ESR) analysis with a spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) revealed time-course increases in spin adducts from hydroxyl radical (DMPO-OH) and carbon-centered radical (DMPO-R) in the supernatant of C2C12 myotubes treated with the combination of IAA + CN. In this condition, malondialdehyde (MDA) and lactate dehydrogenase (LDH) were released into the supernatant. By the addition of iron-chelating 1 mM deferoxamine to the C2C12 preparation with IAA + CN, both ESR signals of DMPO-OH and DMPO-R were completely abolished, and the release of MDA and LDH were significantly reduced, while cyanide-resistant manganese superoxide dismutase had neglegible effects on these parameters. Hence, a part of the injury of C2C12 myotube under IAA + CN was considered to result from the lipid peroxidation, which was induced by hydroxyl radical generated from iron-catalyzed systems such as the Fenton-type reaction. This in vitro model would be a helpful tool for investigating the free radical-related muscle injury.  相似文献   

5.
Spin Trapping Using 2,2-Dimethyl-2H-Imidazole-1-Oxides   总被引:1,自引:0,他引:1  
The ability of novel cyclic nitrones, 4-substituted 2,2-dimethyl-2H-imidazole-1-oxides (IMO's) to trap a variety of short-lived free radicals has been investigated using ESR spectroscopy. IMO's scavenge oxygen-, carbon- and sulfur-derived free radicals to give persistent nitroxides. Compared to the spin trap 5,5-dimethyl-pyrroline-1-oxide, a higher lifetime of hydroxyl radical adducts and a higher selectivity related to the trapping of carbon-centered radicals was found. A reaction between IMO's and superoxide was not observed. ESR parameters of 4-carboxyl-2,2-dimethyl-2H-imidazole-1-oxide (CIMO) spin adducts are highly sensitive to the structure of the trapped radical, e.g., different spectra were detected with radicals derived from Na2SO3 and NaHSO3. From the data obtained, a successful application of these new spin traps in biological systems can be expected.  相似文献   

6.
Endothelial cells were subjected to anoxia/reoxygenation in order to simulate some of the free radical mechanisms occurring in ischaemialreperfusion. With ESR and spin trapping using the spin traps 5.5-dimethyl-l-pyrroline-l-oxide (DMPO) and 3,3,5,5-dimethyl-l-pyrroline-l-oxide (M4PO), the results show that upon reoxygenation of endothelial cells, following a period of anoxia, these cells generate superoxide (02). Cytotoxicity of the spin traps was measured by standard trypan blue exclusion methods. Cell injury or death was measured at various times during reoxygenation by lactate dehydrogenase (LDH) release. Experiments using oxypurinol, SOD, CAT and a combination of SOD and CAT show that while oxypurinol partially prevents spin adduct formation. the combination of SOD and CAT is more effective in doing so. These results suggest that the majority of the oxygen radicals produced by endothelial cells are done so exogenously. The results also suggest that endothelial cells are not only a source of oxygen radicals but also a target.  相似文献   

7.
Abstract: We compared the activity of free d -Ser on the potentiation of cloned NMDA receptors with that of Gly by using a Xenopus oocyte expression system. The extracellular concentration of free d -Ser and Gly was further studied by means of microdialysis. The ED50 values of d -Ser were three to four times lower than those of Gly in any combination of ε1, ε2, ε3, or ε4 and ζ1. Site-directed mutagenesis of ζ1 subunits revealed that some aromatic residues necessary for the action of Gly affected the ED50 value of d -Ser. This result showed that the residues play crucial roles in the action of d -Ser. In vivo microdialysis of rodent brain revealed that the extracellular concentration of free d -Ser in the frontal cortex (6.5 µ M ) was high enough to saturate the Gly site on the NMDA receptor, but that in the cerebellum was not. These findings suggest that d -Ser is a candidate of the endogenous potentiator of the NMDA receptor in the rodent frontal cortex.  相似文献   

8.
Scavenging Effects of Dopamine Agonists on Nitric Oxide Radicals   总被引:4,自引:0,他引:4  
Abstract: It has recently been considered that free radicals are closely involved in the pathogenesis of Parkinson's disease (PD), and the level of nitric oxide radical (NO), one of the free radicals, is reported to increase in PD brain. In the present study, we established a direct detection system for NO in an in vitro NO-generating system using 3-(2-hydroxy-1-methylethyl-2-nitrosohydrazino)- N -methyl-1-propanamine as an NO donor and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO) by electron spin resonance (ESR) spectrometry and examined the quenching effects of the dopamine agonists pergolide and bromocriptine on the amount of NO generated. NO appeared to be scavenged by pergolide and, to a lesser extent, by bromocriptine. In the competition assay, the 50% inhibitory concentration values for pergolide and bromocriptine were estimated to be ∼23 and 200 µ M , respectively. It was previously reported that in vivo treatment of pergolide and bromocriptine completely protected against the decrease in levels of striatal dopamine and its metabolites in the 6-hydroxydopamine-injected mouse. Considering these findings, pergolide and probably bromocriptine may also protect against dysfunction of dopaminergic neurons because of its multiple effects; not only does it stimulate the presynaptic autoreceptors, but it also directly scavenges NO radicals and hence protects against NO-related cytotoxicity. This ESR spectrometry method using carboxy-PTIO may be useful for screening other drugs that can quench NO.  相似文献   

9.
Abstract: To assess the involvement of the serotonin receptor subtype 5-HT1B as terminal autoreceptor regulating 5-HT release in mice, we compared basal values and potassium-evoked changes of extracellular 5-HT levels obtained by in vivo microdialysis in two serotoninergic terminal projection areas of conscious wild-type mice with those measured in homozygous mutant mice lacking the gene encoding the 5-HT1B receptor. In the frontal cortex and ventral hippocampus, basal and K+-evoked 5-HT release did not differ between the two strains of mice studied. The infusion via reverse microdialysis of the selective 5-HT1B receptor agonist CP-93,129 (500 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −44%) and ventral hippocampus (by −32%) of wild-type mice but had no effect in mutants. In a similar manner, the mixed 5-HT1B-5-HT1D receptor agonist sumatriptan (800 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −46%) of wild-type mice but had no effect in mutants. These results demonstrated that 5-HT1B knockout mice are not as sensitive to full (CP-93,129) and mixed (sumatriptan) 5-HT1B receptor agonists as are wild-type mice. These data provide in vivo evidence that, in mice, 5-HT1B, but not 5-HT1D, autoreceptors inhibit 5-HT release at nerve terminals located in the frontal cortex and ventral hippocampus.  相似文献   

10.
Abstract: We have used microdialysis to establish an experimental model to characterize mechanisms whereby released substances cause secondary damage in spinal cord injury. We use this model here to characterize damaging effects of the hydroxyl radical (OH') in vivo in the spinal cord. OH'was generatad in vivo by pumping H2O2 and FeCI2/EDTA through parallel microdialysis fibers inserted into the spinal cord. These agents mixed in the tissue to produce OH'by Fenton's reaction. Two types of control experiments were also conducted, one administering only 5 m M H2O2 and the other only 0.5 m M FeCI2/0.82 m M EDTA. During administration of these chemicals, electrical conduction was recorded as one test for deterioration. OH'blocked conduction completely in 2.5-5 h and Fe2+/EDTA partly blocked conduction, but H2O2 alone did not cause detectable blockage. Histological examination supported the hypothesis that neurons were killed by OH', as Fe2+/EDTA and H2O2 alone did not destroy significant numbers of neurons. OH', H2O2, and Fe2+ all caused gradual increases in extracellular amino acid levels. These results are consistent with Fe2+-catalyzed free radical generation playing a role in tissue damage upon spinal cord injury.  相似文献   

11.
Abstract: Nitric oxide (NO) is reported to cause neuronal damage through various mechanisms. The present study tests the hypothesis that NO synthase inhibition by N ω-nitro- l -arginine (NNLA) will result in decreased oxygen-derived free radical production leading to the preservation of cell membrane structure and function during cerebral hypoxia. Ten newborn piglets were pretreated with NNLA (40 mg/kg); five were subjected to hypoxia, whereas the other five were maintained with normoxia. An additional 10 piglets without NNLA treatment underwent the same conditions. Hypoxia was induced with a lowered FiO2 and documented biochemically by decreased cerebral ATP and phosphocreatine levels. Free radicals were detected by using electron spin resonance spectroscopy with a spin trapping technique. Results demonstrated that free radicals, corresponding to alkoxyl radicals, were induced by hypoxia but were inhibited by pretreatment with NNLA before inducing hypoxia. NNLA also inhibited hypoxia-induced generation of conjugated dienes, products of lipid peroxidation. Na+,K+-ATPase activity, an index of cellular membrane function, decreased following hypoxia but was preserved by pretreatment with NNLA. These data demonstrate that during hypoxia NO generates free radicals via peroxynitrite production, presumably causing lipid peroxidation and membrane dysfunction. These results suggest that NO is a potentially limiting factor in the peroxynitrite-mediated lipid peroxidation resulting in membrane injury.  相似文献   

12.
Abstract: Analogs of the monoamine oxidase (MAO) inhibitor pargyline with a nitroxide free radical moiety attached through an ether linkage to the para position on the benzene ring have been prepared and reacted with solubilized MAO preparations from rat and beef brain and pig liver. These compounds behave as normal irreversible inhibitors of catalytic activity, with some preference for B-type enzyme. When the reaction was monitored by electron spin resonance (ESR), line broadening effects indicative of binding and with an apparent relation to substrate specificity of the preparation were observed. In addition, there was a slow decrease in intensity of the ESR spectra, which could be retarded by the addition of other MAO inhibitors or increased O2 and enhanced by flavin reduction. It appears to be related to development of the irreversible phase of MAO inhibition. Signal recovery with added O2 and studies of a model reaction with free flavin, suggest the signal loss to be a line broadening effect due to interaction with an enzyme-generated paramagnetic species rather than to direct reduction of the nitroxide radical.  相似文献   

13.
A multiple analysis of the cerebral oxidative stress was performed on a physiological model of dementia accomplished by three-vessel occlusion in aged rats. The forward rate constant of creatine kinase, kfor, was studied by saturation transfer 31P magnetic resonance spectroscopy in adult and aged rat brain during chronic hypoperfusion. In addition, free radicals in aging rat brain homogenates before and/or after occlusion were investigated by spin-trapping electron paramagnetic resonance spectroscopy (EPR). Finally, biochemical measurements of oxidative phosphorylation parameters in the above physiological model were performed. The significant reduction of kfor in rat brain compared to controls 2 and 10 weeks after occlusion indicates a disorder in brain energy metabolism. This result is consistent with the decrease of the coefficient of oxidative phosphorylation (ADP:O), and the oxidative phosphorylation rate measured in vitro on brain mitochondria. The EPR study showed a significant increase of the ascorbyl free radical concentration in this animal model. Application of -phenyl-N-tert-butylnitrone (PBN) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin traps revealed formation of highly reactive hydroxyl radical (OH) trapped in DMSO as the CH3 adduct. It was concluded that the ascorbate as a major antioxidant in brain seems to be useful in monitoring chronic cerebral hypoperfusion.  相似文献   

14.
Polyphenols are widely distributed in various fruits, vegetables and seasonings. It is well known that they have several physiological effects due to their antioxidative activities. Their activities depend on structural characteristics that favour the formation of their corresponding stable radicals. During the examination at which pH values, the polyphenol radicals are stabilized, we confirmed that polyphenol radicals were stabilized in NaHCO3/Na2CO3 buffer (pH 10) rather than in physiological pH region. Then, we measured electron spin resonance (ESR) spectra at pH 10 to examine the characteristics of free radical species derived from caffeic acid (CA) with an unsaturated side chain, dihydrocaffeic acid (DCA) with a saturated side chain, chlorogenic acid (ChA) and rosmarinic acid (RA). In analyzing the radical structures, ESR simulation, determinations of macroscopic and microscopic acid dissociation constants and molecular orbital (MO) calculation were performed. In CA, the monophenolate forms were assumed to participate in the formation of free radical species, while in DCA, the diphenol form and the monophenolate forms were presumed to contribute to the formation of free radical species. On the basis of the results, we propose the possible structures of the free radical species formed from polyphenols under alkaline conditions.  相似文献   

15.
We have examined free radical production in a rat model of focal cerebral ischemia using microdialysis coupled with EPR analysis. A microdialysis probe was inserted 2 mm into the cerebral cortex, supplied by the right middle cerebral artery (MCA), and after a 2-hour washout period with artificial cerebral spinal fluid (ACSF), the perfusate solution was changed to ACSF containing the spin trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). No free radicals were detected by DMPO during the pre-ischemia period. Both common carotid arteries and the right MCA were then ligated for 90 minutes. Microdialysate collected every 15 min during the ischemic period demonstrated predominantly superoxide or peroxyl radical production. After release of the occlusive sutures, hydroxyl radical became apparent initially, then thiyl and carbon centered radicals appeared later in samples collected every 15 min for two hours following cortical reperfusion. Careful studies on the purification and stability of DMPO solution were performed to circumvent artifacts and spurious signals.  相似文献   

16.
Abstract: Effects of thyroxine (T4) on nerve growth factor (NGF) level and choline acetyltransferase (ChAT) activity of rat brains were investigated. Repetitive intraperitoneal administration of T4 caused increases in both NGF level and ChAT activity in the frontal cortex, septum, hippocampus, and striatum and decreases in the cerebellum in 2-day-old rats. Only ChAT activity was elevated in the olfactory bulb, and the NGF level remained unchanged there. No changes were observed in the midbrain and pons/medulla. Furthermore, T4 was effective on the post-natal rats only up to day 11. These results suggest that T4 plays a role in the developmental regulation of NGF level and ChAT activity in rat brain in a region- and/or stage-specific manner. That (1) changes in NGF level and ChAT activity occurred in regions nearly identical to those that contained NGF-responding neurons, and (2) the change in NGF level in the hippocampus and frontal cortex was followed by the change of ChAT activity after a single injection of T4 suggest that the effects of T4 on cholinergic differentiation are, at least in part, mediated via NGF, which itself is quantitatively regulated by T4.  相似文献   

17.
Abstract: The mechanism of unidirectional transport of sodium from blood to brain in pentobarbital-anesthetized rats was examined using in situ perfusion. Sodium transport followed Michaelis-Menten saturation kinetics with a V max of 50.1 nmol/g/min and a K m of 17.7 m M in the left frontal cortex. The kinetic analysis indicated that, at a physiologic sodium concentration, ∼26% of sodium transport at the blood-brain barrier (BBB) was carrier mediated. Dimethylamiloride (25 µ M ), an inhibitor of Na+/H+ exchange, reduced sodium transport by 28%, whereas phenamil (25 µ M ), a sodium channel inhibitor, reduced the transfer constant for sodium by 22%. Bumetanide (250 µ M ) and hydrochlorothiazide (1.5 m M ), inhibitors of Na+-K+-2Cl/NaCl symport, were ineffective in reducing blood to brain sodium transport. Acetazolamide (0.25 m M ), an inhibitor of carbonic anhydrase, did not change sodium transport at the BBB. Finally, a perfusate pH of 7.0 or 7.8 or a perfusate P co 2 of 86 mm Hg failed to change sodium transport. These results indicate that 50% of transcellular transport of sodium from blood to brain occurs through Na+/H+ exchange and a sodium channel in the luminal membrane of the BBB. We propose that the sodium transport systems at the luminal membrane of the BBB, in conjunction with Cl/HCO3 exchange, lead to net NaCl secretion and obligate water transport into the brain.  相似文献   

18.
Electron spin resonance (ESR) spectroscopy was used to demonstrate that free radicals are formed in O3-fumigated plant leaves prior to the formation of visible leaf injury. ESR signals with a g-value of 2.0037 to 2.0043, were observed in pea ( Pisum sativum L. cv. Feltham first) and bean ( Phaseolus vulgaris L. cv. Pinto) plants that had been fumigated for 4 h with 70–300 nl l−1 of ozone after they had been treated with the spin-trap N- t -butyl-α-phenylnitrone (PBN). The size of the ESR signals increased with the concentration of ozone used but the nature of the trapped radicals could not be identified. However, further experiments using an inhibitor of ethylene biosynthesis, arninoethoxyvinyl glycine (AVG), showed that the reaction between ozone and ethylene is the cause for ozone toxicity.  相似文献   

19.
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behaviour and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared with wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus (DRN) revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the DRN, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an over-expression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the DRN by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.  相似文献   

20.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号