首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevation of the vitelline coat of eggs of the ascidian, Halocynthia roretzi , was induced by 12-O-tetradecanoylphorbol-13-acetate or phorbol-12, 13-didecanoate, but not by their 4-epimers. After elevation of the vitelline coat in this way, eggs were unable to undergo cleavage on addition of sperm. This elevation of the vitelline coat by phorbol esters was inhibited by specific inhibitors of trypsin-like enzyme, calmodulin, phospholipase A2, and protein kinase C. In association with elevation of the vitelline coat, a trypsin-like enzyme was released from the eggs. The properties of this enzyme were similar to those of the enzyme released by calcium ionophore, which also induced elevation of the vitelline coat, suggesting that similar exocytosis of intracellular granules occurred in both cases. Calmodulin, possibly involved in the elevation process, was isolated from eggs and characterized.  相似文献   

2.
The effects of BAPTA, heparin, and neomycin on electrical light responses were studied in the photoreceptors of Hirudo medicinalis. Light activation produces a fast increase in intracellular Ca2+ concentration (Cai) as detected with the fluorescent Ca2+ indicator calcium green-5N. Chelating intracellular calcium by injections of 10 mmol(-1) BAPTA suppresses spontaneous quantum bumps, reduces light sensitivity by more than 2 log(10) units, and substantially increases the latent period of light responses. BAPTA strongly inhibits the plateau phase of responses to long steps of light. Injections of 45-100 mg ml(-1) of heparin act in a similar manner to BAPTA, affecting the latency of the light responses even more. De-N-sulfated heparin, an inactive analog, is almost ineffective at the same concentration compared with heparin. Heparin diminishes the light-induced Cai elevation significantly, whereas de-N-sulfated heparin does not. Intracellular injections of 50-100 mmol l(-1) of the aminoglycoside neomycin, which inhibits phospholipase-C-mediated inositol 1,4,5-trisphosphate formation, acts similar to BAPTA and heparin. Pressure injections of the hydrolysis resistant analog of inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate, strongly depolarize leech photoreceptors and mimic an effect of light adaptation. These results suggest a close similarity between phototransduction mechanisms in leech photoreceptors and existing models for visual transduction in other invertebrate microvillar photoreceptors.  相似文献   

3.
Inositol 1,4,5-trisphosphate is an intracellular second messenger, produced upon stimulation of the phosphoinositide system, capable of mobilizing calcium from intracellular stores. We have recently identified high levels of specific binding sites for inositol 1,4,5-trisphosphate in brain membranes (Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. (1987) Nature 325, 159-161) and have now further characterized these sites. In cerebellar membranes, inositol 1,4,5-trisphosphate binding sites are abundant (20 pmol/mg protein) and display high affinity and selectivity for inositol 1,4,5-trisphosphate (KD approximately equal to 40 nM), whereas other inositol phosphates such as inositol 1,3,4,5-tetrakisphosphate (Ki approximately equal to 10 microM) and inositol 1,4-bisphosphate (Ki approximately equal to 10 microM) exhibit much lower affinity for this site. Submicromolar concentrations of calcium strongly inhibit inositol 1,4,5-trisphosphate binding (IC50 approximately equal to 300 nM). A sharp increase in binding occurs at slightly alkaline pH. These results suggest that actions of inositol 1,4,5-trisphosphate are regulated by physiological alterations in intracellular pH and calcium concentrations.  相似文献   

4.
The effects of BAPTA, heparin, and neomycin on electrical light responses were studied in the photoreceptors of Hirudo medicinalis. Light activation produces a fast increase in intracellular Ca2+ concentration (Cai) as detected with the fluorescent Ca2+ indicator calcium green-5N. Chelating intracellular calcium by injections of 10 mmol l-1 BAPTA suppresses spontaneous quantum bumps, reduces light sensitivity by more than 2 log10 units, and substantially increases the latent period of light responses. BAPTA strongly inhibits the plateau phase of responses to long steps of light. Injections of 45-100 mg ml-1 of heparin act in a similar manner to BAPTA, affecting the latency of the light responses even more. De-N-sulfated heparin, an inactive analog, is almost ineffective at the same concentration compared with heparin. Heparin diminishes the light-induced Cai elevation significantly, whereas de-N-sulfated heparin does not. Intracellular injections of 50-100 mmol l-1 of the aminoglycoside neomycin, which inhibits phospholipase-C-mediated inositol 1,4,5-trisphosphate formation, acts similar to BAPTA and heparin. Pressure injections of the hydrolysis resistant analog of inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate, strongly depolarize leech photoreceptors and mimic an effect of light adaptation. These results suggest a close similarity between phototransduction mechanisms in leech photoreceptors and existing models for visual transduction in other invertebrate microvillar photoreceptors.  相似文献   

5.
The ability of cAMP-dependent hormones to modulate the actions of Ca2(+)-mobilizing hormones was studied in single fura-2-injected guinea pig hepatocytes. In 91% of cells the cAMP-linked hormone, isoproterenol, applied alone, did not alter cytosolic Ca2+ concentration. In 78% of cells which had been pre-exposed to a low concentration of angiotensin II, isoproterenol was able to increase cytosolic Ca2+. Isoproterenol did not, however, increase inositol 1,4,5-trisphosphate or inositol tetrakisphosphate on its own, or in the presence of angiotensin II. Isoproterenol was also able to raise cytosolic Ca2+ concentration in cells microinjected with inositol 2,4,5-trisphosphate or a photoactivatable derivative of inositol 1,4,5-trisphosphate. The elevation of cytosolic Ca2+ concentration induced by isoproterenol in angiotensin II-treated cells and cells injected with caged inositol 1,4,5-trisphosphate was blocked by heparin, implying that the effect was mediated by an inositol 1,4,5-trisphosphate receptor agonist. In permeabilized hepatocytes, inositol 1,4,5-trisphosphate-induced Ca2+ release was enhanced by 8-bromo-cAMP and the catalytic subunit of cAMP-dependent kinase. Cyclic AMP-dependent kinase shifted the dose-response curve for inositol 1,4,5-trisphosphate-mediated Ca2+ release to the left by a factor of 4 and increased the total amount of Ca2+ released by 25%. These results indicate that increased sensitivity of the intracellular Ca2+ releasing organelle to inositol 1,4,5-trisphosphate is responsible for synergism between phospholipase C- and adenylylcyclase-linked hormones in the liver.  相似文献   

6.
W Abebe  K M MacLeod 《Life sciences》1991,49(13):PL85-PL90
The effects of norepinephrine on total tissue levels of inositol 1,4,5-trisphosphate were measured by protein binding assay in aortas from rats with chronic streptozotocin-induced diabetes and from age-matched control rats. In both control and diabetic aortas, norepinephrine induced a rapid, transient and concentration-dependent elevation of inositol 1,4,5-trisphosphate content during contraction. Maximum production of inositol 1,4,5-trisphosphate in response to norepinephrine was greater in diabetic than in control aortas. However, the sensitivities of control and diabetic aortas to norepinephrine for inositol 1,4,5-trisphosphate production were not significantly different. Enhanced norepinephrine-induced production of inositol 1,4,5-trisphosphate in diabetic aortas may contribute to the increased maximum contractile responsiveness of these arteries to the agonist. However, since enhanced contractile responses of diabetic aortas to norepinephrine were also detected at times when inositol 1,4,5-trisphosphate levels were not significantly increased, other factors also appear to be involved in mediating enhanced contractions of diabetic arteries to norepinephrine.  相似文献   

7.
Inositol 1,4,5-trisphosphate is a second messenger of the phosphoinositide system which can mobilize calcium from intracellular stores. Rat cerebellum is an abundant source of a receptor for inositol 1,4,5-trisphosphate (Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S., and Snyder, S. H. (1987) J. Biol. Chem. 262, 12132-12136). In this study we have solubilized and purified this receptor to apparent homogeneity from rat cerebellum. Crude membrane, detergent-solubilized, and purified receptor preparations display similar selectivity for inositol 1,4,5-trisphosphate over other inositol phosphates. The purified receptor is globular with a Stokes' radius of approximately 10 nm. Electrophoretic analysis reveals one protein band with an Mr of 260,000. While binding is reversibly inhibited by 300 nM calcium in particulate fractions and detergent-solubilized membranes, the purified protein is not inhibited by calcium concentrations up to 1.5 mM. Inhibition by calcium is reconstituted by addition of detergent-solubilized cerebellar membranes, but not by the cytosolic fraction of cerebellum.  相似文献   

8.
Canonical transient receptor potential 3 (TRPC3) is a receptor-activated, calcium permeant, non-selective cation channel. TRPC3 has been shown to interact physically with the N-terminal domain of the inositol 1,4,5-trisphosphate receptor, consistent with a "conformational coupling" mechanism for its activation. Here we show that low concentrations of agonists that fail to produce levels of inositol 1,4,5-trisphosphate sufficient to induce Ca(2+) release from intracellular stores substantially activate TRPC3. By several experimental approaches, we demonstrate that neither inositol 1,4,5-trisphosphate nor G proteins are required for TRPC3 activation. However, diacylglycerols were sufficient to activate TRPC3 in a protein kinase C-independent manner. Surface receptor agonists and exogenously applied diacylglycerols were not additive in activating TRPC3. In addition, inhibition of metabolism of diacylglycerol slowed the reversal of receptor-dependent TRPC3 activation. We conclude that receptor-mediated activation of phospholipase C in intact cells activates TRPC3 via diacylglycerol production, independently of G proteins, protein kinase C, or inositol 1,4,5-trisphosphate.  相似文献   

9.
The effects of heparin on intracellular calcium release in monolayers of permeabilised cultured rabbit smooth muscle cells were determined using 45Ca effluxes. Low molecular weight heparin inhibited inositol 1,4,5-trisphosphate (InsP3) induced Ca2+ release (IC50 = 0.8 microgram/ml), but not guanosine 5'-O-(3-thio triphosphate) (GTP gamma S) stimulated Ca2+ release. Only a small inhibition was noted with high molecular weight heparin and de-N-sulphated heparin, although chondroitin sulphate A potently inhibited the InsP3 response. These results indicate the competitive and specific nature of the heparin effect and give information about the structure of the InsP3 site.  相似文献   

10.
Second messengers derived from inositol lipids   总被引:2,自引:0,他引:2  
Many hormones, growth factors, and neurotransmitters stimulate their target cells by promoting the hydrolysis of plasma-membrane phosphoinositides to form the two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In such cells, ligand-receptor interaction stimulates specific phospholipases that are activated by guanyl nucleotide regulatory G proteins or tyrosine phosphorylation. In many cells, the initial rise in cytoplasmic calcium due to Ins(1,4,5)P3-induced mobilization of calcium from agonistsensitive stores is followed by a sustained phase of cytoplasmic calcium elevation that maintains the target-cell response, and is dependent on influx of extracellular calcium. Numerous inositol phosphates are formed during metabolism of the calcium-mobilizing messenger, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3)], to lower and higher phosphorylated derivatives. The cloning of several phospholipase-C isozymes, as well as the Ins(1,4,5)P3-5 kinase and the Ins(1,4,5)P3 receptor, have clarified several aspects of the diversity and complexity of the phosphoinositide-calcium signaling system. In addition to their well-established roles in hormonal activation of cellular responses such as secretion and contraction, phospholipids and their hydrolysis products have been increasingly implicated in the actions of growth factors and oncogenes on cellular growth and proliferation.  相似文献   

11.
Abstract: l -Glutamate (3-1,000 μ M ) and (1S,3R)-l-aminocyclopentane-1,3-dicarboxylic acid (1S.3R-ACPD; 10-1,000 μ M ), a selective agonist for the metabotropic glutamate receptor, stimulated the formation of inositol 1,4,5-trisphosphate in a concentration-dependent manner. l -Glutamate was half as efficacious as 1S,3R-ACPD. N -methyl- d -aspartate (nMDA; 1 n M to 1 m M ) did not significantly influence the response to a maximally effective concentration of 1S,3R-ACPD (100 μ M ). On the other hand, coapplication of (R,S)-α-amino-3-hydroxy-5-methylisoxa-zole-4-propionic acid (AMPA; 1-300 n M ) produced a concentration- and time-dependent inhibition of the 1S,3R-ACPD effect, with a maximal inhibition (97%) at 100 n M . Ten micromolar 6-cyano-7-nitroquinoxaline-2,3-dione. an antagonist of the AMPA receptor, blocked the inhibitory effect of AMPA. Reduced extracellular calcium concentration, as well as 10 μ M nimodipine, an l -type calcium channel antagonist, inhibited the AMPA influence on the 1S,3R-ACPD response. W-7, a calcium/calmodulin antagonist, prevented the inhibition by AMPA. whereas H-7. an inhibitor of protein kinase C, had no effect. These data suggest that activation of AMPA receptors has an inhibitory influence on inositol 1,4,5-trisphosphate formation mediated by stimulation of the metabotropic glutamate receptor. The mechanism of action involves calcium influx through l -type calcium channels and possible activation of calcium/calmodulin-dependent enzymes.  相似文献   

12.
The effect of bradykinin on the activation production of inositol 1,4,5-trisphosphate and prostaglandin E2 (PGE2) was examined in the murine osteoblastic cell line, MC3T3-E1. Bradykinin, at concentrations ranging from 1 to 1000 nM, stimulated the production of inositol 1,4,5-trisphosphate 2.5- to 3-fold within 10 s, and elevated cytosolic-free Ca2+, even in the absence of external Ca2+. This process is mediated through the activation of phospholipase C. Bradykinin at the same concentration also stimulated the production of PGE2 and caused a release of 3H radioactivity from the cells prelabeled with [3H]arachidonic acid, probably via the activation of phospholipase A2. Pretreatment of the cells with pertussis toxin inhibited the stimulation of PGE2 production and 3H radioactivity release, while the elevation in cytosolic Ca2+ and the production of inositol 1,4,5-trisphosphate were not altered by toxin-pretreatment. The addition of an unhydrolyzable analog of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) to the beta-escin-permeabilized cells prelabeled with [3H]arachidonic acid enhanced the release of 3H radioactivity. The simultaneous presence of bradykinin with GTP gamma S further activated the 3H radioactivity release in the beta-escin-permeabilized cells. These results provide evidence that receptors for bradykinin in the MC3T3-E1 couple stimulating arachidonate release, probably via the activation of phospholipase A2, through a guanine nucleotide binding protein sensitive to pertussis toxin.  相似文献   

13.
Abstract: The effect of the hydrolysis-resistant GTP analogs, guanosine 5'- O -(3-thiotriphosphate) (GTPγS) and guanylyl imidodiphosphate (GMPPNP), on norepinephrine (NE) secretion from digitonin-permeabilized rat pheochromocytoma cells, PC12, was examined. Although secretion in the presence of saturating Ca2+ (10 μ M ) was not affected by GTP7S or GMPPNP, secretion in the absence of Ca2+ was stimulated by these GTP analogs. Secretion induced by saturating concentrations of GTPγS or GMPPNP was approximately 80% of that induced by 10 μ M Ca2+. Half-maximum stimulation was induced by 30 μ M GTPγS or GMPPNP. Both Ca2+-stimulated and GTPγS-stimulated secretion were ATP dependent and inhibited by N -ethylmaleimide. The GTPγS-stimulated secretion of NE from permeabilized PC12 cells does not appear to result from either the release of Ca2+ or the activation of protein kinase C. Activation of protein kinase C by pretreatment of intact cells with 12- O -tetradecanoyl-phorbol 13-acetate caused a 50% increase in both Ca2+-stimulated and GTP7S-stimulated secretion. Cholera and pertussis toxins did not affect Ca2+-stimulated or GTPγS-stim-ulated NE secretion. Guanosine 5'- O -(2-thiodiphosphate) (GDPβS) and GTP inhibited GTPγS-stimulated secretion but not Ca2+-stimulated secretion. The inability of GDPβS to inhibit Ca2+-stimulated secretion indicates that the process affected by GTPγS is not an essential step in the Ca2+-stimulated pathway.  相似文献   

14.
Microvillar photoreceptors of invertebrates exhibit a light-induced rise in the intracellular concentration of free calcium (Cai) that results in part from release of calcium from an intracellular compartment. This light-induced release of calcium appears to result from a cascade of reactions that involve rhodopsin, a GTP-binding protein and a phospholipase-C which releases inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) from the plasma membrane; the Ins(1,4,5)P3 acts to release calcium from smooth endoplasmic reticulum. In the ventral photoreceptor of the horseshoe crab Limulus polyphemus not all of the endoplasmic reticulum is subject to calcium release by Ins(1,4,5)P3. Only endoplasmic reticulum in the light-sensitive region of the cell is competent to release calcium in response to Ins(1,4,5)P3. The release of calcium by Ins(1,4,5)P3 in ventral photoreceptors appears to be subject to feedback inhibition through elevated Cai. We suggest that this feedback inhibition contributes to sensory adaptation in the photoreceptor and may account for oscillatory membrane responses sometimes observed with large injections of Ins(1,4,5)P3.  相似文献   

15.
16.
Spermatozoa bind to the vitelline coat in the ascidians and many other animals. The binding of sperm in Halocynthia roretzi is mediated by a sperm alpha-L-fucosidase and complementary-L-fucosyl residues of glycoproteins in the vitelline coat. cDNA clones for alpha-L-fucosidase were isolated from growing testis mRNA. It contained a 1398 bp full-length cDNA insert (HrFuc'ase) that encoded the 466 amino acid residues of H. roretzi sperm alpha-L-fucosidase. A putative signal peptide of 21 amino acid residues proceeded the sequence for the mature protein (M.W. 52.4 kDa). The coding sequence for HrFuc'ase showed 47.7% sequence identity to the human liver fucosidase sequence. The polyclonal antibody was prepared against a lacZ-HrFuc'ase fusion protein expressed in E. coli. The antibody crossed to a 54 kDa protein in sperm on western blotting and inhibited fertilization in a dose dependent manner. These data suggest that sperm-egg binding is mediated by the sperm alpha-L-fucosidase, HrFuc'ase in the ascidian, H. roretzi.  相似文献   

17.
We tested lysophosphatidic acid (LPA), known to induce inositol phosphate generation and calcium signals as well as rearrangements of the cytoskeleton and mitogenic responses in fibroblasts, for its ability to activate phospholipase C in an exocrine cell system, the salt-secreting cells from the avian nasal salt gland. LPA (>10 nmol/l) caused the generation of inositol phosphates from membrane-bound phosphatidylinositides. The resulting calcium signals resembled those generated upon activation of muscarinic receptors, the physiological stimulus triggering salt secretion in these cells. However, close examination of the LPA-mediated calcium signals revealed that the initial calcium spike induced by high concentrations of LPA (>10 μmol/l) may contain a component that is not dependent upon generation of inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) and may result from calcium influx from the extracellular medium induced by LPA in a direct manner. Low concentrations of LPA (<10 μmol/l), however, induce inositol phosphate generation, Ins(1,4,5)P3-mediated release of calcium from intracellular pools and calcium entry. These effects seem to be mediated by a specific plasma membrane receptor and a G protein transducing the signal to phospholipase C in a pertussis-toxin-insensitive manner. Signaling pathways of the muscarinic receptor and the putative LPA-receptor seem to merge at the G-protein level as indicated by the fact that carbachol and LPA trigger hydrolysis of the same pool of phosphatidylinositol (4,5)-bisphosphate (PIP2) and mobilize calcium from the same intracellular stores.  相似文献   

18.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

19.
Guinea-pig hepatocytes whose plasma membranes were rendered permeable by treatment with saponin, accumulated 45calcium in the presence of potassium oxalate and ATP. The uptake was linear with time for up to one hour when high-capacity EGTA buffers were used (5mM). In the presence of a supra-maximal concentration of inositol 1,4,5-trisphosphate, under conditions minimising metabolism of this calcium-mobilising messenger, 45calcium accumulation was inhibited by about 40% for a period of one hour. Electron microscopic examination of the cells, revealed the presence of electron dense precipitates. Electron microprobe analysis of the precipitates indicated that they constituted the majority of the oxalate-dependent calcium uptake. The precipitates were located throughout the non-nuclear regions of the cells. Cells treated with inositol 1,4,5-trisphosphate contained fewer precipitates, but high cell-to-cell variability prevented conclusions as to the precise location of the pool sensitive to inositol 1,4,5-trisphosphate. These results support the previous contention that a fraction of endoplasmic reticulum is completely emptied of calcium by maximal concentrations of inositol 1,4,5-trisphosphate, while another fraction is insensitive to this action. In addition, these findings indicate that the pool of intracellular calcium on which inositol 1,4,5-trisphosphate acts is oxalate-permeable, and that the calcium-releasing action of inositol 1,4,5-trisphosphate does not desensitise within one hour.  相似文献   

20.
Zhang XG  Coté GG  Crain RC 《Planta》2002,215(2):312-318
Mesophyll cells of Zinnia elegans L., cultured in the presence of phytohormones, will transdifferentiate and undergo programmed cell death to become tracheary elements, thick-walled cells of the xylem. This system is a model system for study of plant cell development and differentiation. We report that a high concentration of extracellular Ca(2+) is necessary during the first 6 h of culturing for tracheary elements to form. Extracellular Ca(2+) is still required at later times, but at a much lower concentration. When cells transdifferentiate in adequate Ca(2+), microsomal phospholipase C activity increases and levels of inositol 1,4,5-trisphosphate rise at about hour 4 of culturing. The production of inositol 1,4,5-trisphosphate appears to be important for tracheary element formation, since inhibitors of phospholipase C inhibit both inositol 1,4,5-trisphosphate production and tracheary element formation. Pertussis toxin, an inhibitor of GTP-binding proteins, inhibits transdifferentiation and eliminates inositol 1,4,5-trisphosphate production. Tracheary element formation was not completely abolished by inhibitors that eliminated inositol 1,4,5-trisphosphate production, suggesting the involvement of other pathways in regulating transdifferentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号