首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibacterial functionalization of wool fabric via immobilizing lysozymes   总被引:2,自引:0,他引:2  
Greater attention has been given to enzymatic processes of textiles as effective alternatives to conventional chemical treatments because of the non-toxic and eco-friendly characteristics of enzymes as well as the increasingly important requirement for reducing pollution in textile production. A new functionalization method for wool fabrics based on immobilization of lysozymes was investigated in this paper. Wool fabric was first activated with glutaraldehyde, and then employed to covalently immobilize lysozymes. Main immobilization parameters were optimized in terms of the activity of immobilized enzyme. A high activity of the immobilized enzyme was obtained when the fabric was activated at 25 °C for 6 h in a bath containing with 0.2% of glutaraldehyde followed by the immobilization at 4 °C and pH 7.0 for 6 h with 5 g l−1 lysozyme. The scanning electron microscopy and staining tests based on modified Coomassie protein assay (Bradford method) revealed that the lysozyme was fixed covalently on the wool fabric. Wool fabrics immobilizing lysozymes presented a higher ratio of bacteriostasis to Staphylococcus aureus. The durability of antibacterial wool was assessed and the lysozyme immobilized on wool fabric retained ca. 43% of its activity after five cycles of use when taking the activity of the immobilized lysozyme before using as reference.  相似文献   

2.
Mei  Jingxia  Zhang  Nan  Yu  Yuanyuan  Wang  Qiang  Yuan  Jiugang  Wang  Ping  Cui  Li  Fan  Xuerong 《Applied microbiology and biotechnology》2018,102(21):9159-9170

Proteases can cause unacceptable fiber damage when they are singly applied to wool anti-felting treatment which can make wool textiles machine-washable. Even if protease is attached by synthetic polymers, the modified protease plays a limited role in the degradation of keratin with dense structure consisting of disulfide bonds in the scales. Here, to obtain “machine-washable” wool textiles, a novel “trifunctional protease” with reducibility, hydrolysis, and localization is developed by means of covalent bonding of protease molecules with poly (ethylene glycol) bis (carboxymethyl) ether (HOOC-PEG-COOH) and l-cysteine using carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling, aiming at selectively degrading the scales on the surface of wool. The formation of polymer is confirmed with size exclusion chromatography (SEC) and Fourier transform infrared spectroscopy (FT-IR). Ellman’s test and fluorescence microscopy reveal that the modified protease can reduce disulfide bonds and restrict hydrolysis of peptide bonds on the wool scales. Furthermore, when applied to wool fabrics, the modified protease reach better treatment effects considering dimensional stability to felting (6.12%), strength loss (11.7%) and scale dislodgement proved by scanning electron microscopy (SEM), alkali solubility, wettability, and dyeability. This multifunctional enzyme is well-designed according to the requirement of the modification of wool surface, showing great potential for eco-friendly functionalization of keratin fibers rich in disulfide linkage.

  相似文献   

3.
Lysozyme immobilized on polyacrylamide beads or cellulose fibers is found to retain activity for hydrolysis of the cell walls of Micrococcus lysodeikticus. The immobilization on cellulose is somewhat reversible; the polyacrylamide immobilized lysozyme does not release any enzyme upon washing as evidenced by UV and lytic activity tests. The specific catalytic activity of the lysozyme-polyacrylamide system is found to decline as the density of derivatized surface groups is increased; a model of protein deactivation due to excess surface coupling is presented as a possible rationale for such specific activity variations.  相似文献   

4.
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.  相似文献   

5.
The preparation of biocatalysts based on immobilized trypsin is of great importance for both proteomic research and industrial applications. Here, we have developed a facile method to immobilize trypsin on hydrophobic cellulose-coated silica nanoparticles by surface adsorption. The immobilization conditions for the trypsin enzyme were optimized. The as-prepared biocatalyst was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and elemental analysis. In comparison with free enzyme, the immobilized trypsin exhibited greater resistances against thermal inactivation and denaturants. In addition, the immobilized trypsin showed good durability for multiple recycling. The general applicability of the immobilized trypsin for proteomic studies was confirmed by enzymatic digestion of two widely used protein substrates: bovine serum albumin (BSA) and cytochrome c. The surface adsorption protocols for trypsin immobilization may provide a promising strategy for enzyme immobilization in general, with great potential for a range of applications in proteomic studies.  相似文献   

6.
This study reports the fabrication of bioactive polymer fibers onto which signaling molecules can control and direct cell responses. To encourage and control directional biological responses, GRGDS peptides were immobilized onto the surface of 100 microm diameter poly(ethylene terephtalate) (PET) fibers (monofilaments). PET fiber surfaces were first coated with a thin polymeric interfacial bonding layer bearing amine groups by plasma polymerization. Carboxy-methyl-dextran (CMD) was covalently grafted onto the surface amine groups using water-soluble carbodiimide chemistry. GRGDS were covalently immobilized onto CMD-coated fiber surfaces. X-ray photoelectron spectroscopy (XPS) analyses enabled characterization of the multilayer fabrication steps. Human umbilical vein endothelial cells were seeded and grown on fibers to investigate cell patterning behavior (i.e., adhesion, spreading, cytoskeleton organization, and cell orientation). Cell adhesion was reduced on CMD-coated fibers, whereas amine- and GRGDS-coated fibers promoted cell adhesion and spreading. Cell adhesion was enhanced as the GRGDS concentration increased. Epifluorescence microscopic visualization of cells on RGD-coated substrates showed well-defined stress fibers and sharp spots of vinculin, typical of focal adhesions. In comparison to plasticware commonly used in cell cultures, fiber curvature promoted cell orientation along the fiber axis.  相似文献   

7.
Bostrycin, a red antibacterial agent with tetrahydroanthraquinone structure, has been isolated from Nigrospora sp. No. 407. This study investigated the potential antibacterial and multifunctional properties of matrixes through immobilization of bostrycin on their surface for immobilization of protein and prevention of bacterial growth. Bostrycin was immobilized on nonwoven polypropylene (PP) fabric by a technique using glutaraldehyde and polyethyleneimine for the activation of the surface. Glucose oxidase immobilized on bostrycin-treated nonwoven PP fabric showed high activity. The immobilization process improved thermal stability of the enzymes. During repeated assay for 30 cycles, the enzyme activity dropped to only 70% of the initial activity. Both bostrycin-treated nonwoven PP fabric sample and subsequently immobilized glucose oxidase sample on the surface also still exhibited a bacteriostatic effect. This is the first study to show that bostrycin is a promising coupling agent for surface modification on matrix and its potential applications in protein immobilization and biomaterial-centered infection.  相似文献   

8.
The surface functionalization of an electrically conductive polypyrrole film (PPY) with a viologen, (N-(2-carboxyl-ethyl)-N'-(4-vinyl-benzyl)-4,4'-bipyridinium dichloride, or CVV) for the covalent immobilization of glucose oxidase (GOD) has been carried out. The viologen was first synthesized and graft polymerized on PPY film. It then served as an anchor via its carboxyl groups for the covalent immobilization of GOD. The surface composition of the as-functionalized substrates was characterized by X-ray photoelectron spectroscopy (XPS). The effects of the CVV monomer concentration on the CVV-graft polymer concentration and the amount of GOD immobilized on the surface were investigated. The activity of the immobilized GOD was compared with that of free GOD and the kinetic effects were also obtained. The cyclic voltammetric (CV) response of the GOD-functionalized PPY substrates was studied in a phosphate buffer solution under an argon atmosphere. The CV results support the mechanism in which CVV acts as a mediator to transfer electron between the electrode and enzyme, and hence regenerating the enzyme in the enzymatic reaction with glucose. High sensitivity and linear response of the enzyme electrode was observed with glucose concentration ranging from 0 to 20 mM.  相似文献   

9.
A blend mixture of biodegradable poly(epsilon-caprolactone) (PCL) and poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol)-NH(2) (PLGA-b-PEG-NH(2)) block copolymer was electrospun to produce surface functionalized nanofibers. The resulting nanofibrous mesh with primary amine groups on the surface was applied for immobilization of biologically active molecules using lysozyme as a model enzyme. Lysozyme was immobilized via covalent conjugation by using a homobifunctional coupling agent. The nanofibrous mesh could immobilize a far greater amount of lysozyme on the surface with concomitantly increased activity, primarily due to its larger surface area, compared to that of the solvent casting film. It was also found that the enzyme immobilization process slightly altered thermal and pH-dependent catalytic activity profiles compared to those of native lysozyme. The results demonstrated the surface functionalized electrospun nanofibrous mesh could be used as a promising material for immobilizing a wide range of bioactive molecules.  相似文献   

10.
Zhang Z  Chen S  Jiang S 《Biomacromolecules》2006,7(12):3311-3315
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.  相似文献   

11.
Organic polymer materials (OPM) differing in sets of functional groups, fiber surface thickness and character, and density of fiber packing in fabric were synthesized. OPM were studied for assessing the possibility of their application as sorbents for oil spills in water bodies. The synthesized OPM were used for the creation of bio-hybrid materials as matrices for immobilization of bacteria of the genus Rhodococcus sp. capable of petroleum degradation. Actively dividing bacterial cells forming clusters were shown to be present at the surface of fibers. Active attachment of the cells to polymeric surface due to intrusion and/or excretion of extracellular biopolymeric matrix were detected. The modification of polymer sorbents was shown to influence bacterial immobilization. The peculiarity of growth and the specificity of cell morphology of bacterial culture were noted.  相似文献   

12.
A surface modification technique was developed for the functionalization of polypyrrole (PPY) film with glucose oxidase (GOD) and viologen moieties. The PPY film was first graft copolymerized with acrylic acid (AAc) and GOD was then covalently immobilized through the amide linkage formation between the amino groups of the GOD and the carboxyl groups of the grafted AAc polymer chains in the presence of a water-soluble carbodiimide. Viologen moieties could also be attached to the PPY film via graft-copolymerization of vinyl benzyl chloride with the PPY film surface followed by reaction with 4,4'-bipyridine and alpha,alpha'-dichloro-p-xylene. X-ray photoelectron spectroscopy (XPS) was used to characterize the PPY films after each surface modification step. Increasing the AAc graft concentration would allow a greater amount of GOD to be immobilized but this would decrease the electrical conductivity of the PPY film. The activity of the immobilized GOD was compared with that of free GOD and the kinetic effects were also studied. The immobilized GOD was found to be less sensitive to temperature deactivation as compared to the free GOD. The results showed that the covalent immobilization technique offers advantages over the technique involving the entrapment of GOD in PPY films during electropolymerization. The presence of viologen in the vicinity of the immobilized GOD also enabled the GOD-catalyzed oxidation of glucose to proceed under UV irradiation in the absence of O(2).  相似文献   

13.
The aim of this study was the surface modification of wool fibers to confer a multifunctional finishing to the fabrics, improving the textile value and its applications without damage of comfort properties. The attention was focused on an economical and environmental friendly process to obtain an effective treatment with good durability to washing.  相似文献   

14.
Covalently bound lipids cover the wool surface and make enzymatic degradation of wool scales very difficult. In this paper, methanolic potassium hydroxide (MPH) pretreatment was used prior to enzymatic treatment of wool with protease, aiming at hydrolyzing the outmost lipids on the wool surface and promoting the subsequent proteolytic reaction. The efficacy of lipid removal from the fiber surface and the properties of the protease‐treated wool were evaluated. The results indicated that mild MPH pretreatment with 0.10 mol/L MPH for 10 min improved the wettability of the wool without adverse impacts on its mechanical properties. The wetting time and area shrinkage of the wool fabric reached 0.5 s and 5.6%, respectively, and the strength loss was within the acceptable range. Pretreatment with high concentrations of MPH for longer times led to significant damage to the wool fibers and caused heavy strength loss, without improving the antifelting properties after protease treatment. Thus, the combination of mild MPH and protease treatments endowed the wool with desirable properties in contrast to the treatment with protease alone.  相似文献   

15.
Glucose oxidase (GOD) immobilized long period grating (LPG) fibers have been proposed for the specific and sensitive detection of glucose. The treatment of LPG fibers with aminopropyl triethoxysilane has induced biding sites for the subsequent GOD immobilization. Field emission scanning electron microscopy, confocal laser scanning microscopy, infrared spectroscopy and Raman spectroscopy have provided detailed evidences about the effectiveness of the adopted biofunctionalization methodology. The enzyme activity is conserved during the immobilization step. Fabricated LPG sensor was tested on different glucose solutions to record the transmission spectra on an optical spectrum analyzer. The wavelength shifts in the transmission spectra are linearly correlated with the glucose concentration in the range of 10-300 mg dL(-1). The fabricated sensor gives fast response and is demonstrated to be of practical utility by determining glucose contents in blood samples. Proposed technique can further be extended to develop LPG fiber based novel, sensitive and label free nanosensors for disease diagnosis and clinical analysis.  相似文献   

16.
Summary A lytic enzyme reactor for microbial cell lysis is described in which lysozyme is immobilized on the lumen of hemodialyzer hollow fibers using epichlorohydrin as a coupling agent. The cell suspension flows through the lumen without any hindrance where the cells are lyzed by the immobilized lysozyme efficiently. Micrococcus lysodeikticus cells at concentrations of 0.25 g/L and 5 g/L were successfully lyzed without clogging the hollow fiber. In comparison with lysozyme immobilized on submicron particles, the activity retention was at least 8 times higher.  相似文献   

17.
Biocatalytic transformations that employ immobilized enzymes become increasingly important for industrial applications. Synthetic or natural textile fiber materials such as polyester, polyamide or viscose are support materials that are comparatively inexpensive. Contrary to traditional support materials, their flexibility enables their use in reactors of any geometry and a fast and residue‐free removal from batch reactors. In this study a permanently immobilized peroxidase (Baylase®) has been investigated on polyester felt as a solid support as a new heterogeneous catalyst system. The polyester felt was functionalized by coating with polyvinylamine and subsequent activation with glutaraldehyde as a crosslinking agent. The enzyme load on the textile surface, the activity of the immobilized protein after repeated use as well as the storage stability was evaluated. Scanning electron micrographs and UV Vis spectroscopy made it possible to verify the enzyme immobilization on the textile surface. Furthermore, the load of immobilized peroxidase was determined by ICP OE spectrometry to be 9–12 mg per gram of textile. The activity of immobilized Baylase® remained high over 35 reaction cycles and a storage period of 8 weeks.  相似文献   

18.
The objective of the present study was to assess the effectiveness of a combined protocol of muscle stretching and strengthening after immobilization of the hindlimb. Thirty female Wistar rats were divided into 6 groups: group immobilized for 14 days to cause full plantar flexion by cast (GI, n = 6); group immobilized/stretched (GIS, n = 6): submitted to the same immobilization and to 10 days of passive stretching; group immobilized/electrically stimulated (GIES, n = 6): similarly immobilized and submitted to 10 days of low frequency electrical stimulation (ES); group immobilized/stretched/electrically stimulated (GISES, n = 6): similarly immobilized, submitted to 10 days of stretching and ES application; group immobilized/free (GIF, n = 3): similarly immobilized and then left with free limbs for 10 days; control group (CG, n = 3). The middle portion of the soleus muscle was frozen and sections were stained with HE or mATPase. Morphological analysis revealed high cellular reactivity in the GISES, GIES and GIS groups. The lesser diameter and proportion of type I fibers (TIF) and type II fibers (TIIF) (at pH 9.4) and connective area (at HE stain) were measured with an image analyzer and the data obtained were analyzed statistically by the unpaired Student t-test (p < or = 0.05). The results indicated that: a) immobilization generated atrophy of both fiber types (p < 0.05); b) joint application of ES and stretching was not efficient in reestablishing the size of the two fiber types compared to CG (p < 0.05); c) the ES protocol reestablished only the size of TIIF, which showed values similar to those detected in CG (p < 0.05); d) the stretch increased the proliferation of the perimysium connective tissue (p < 0.05). Thus, we conclude that, in the model applied here to female rats, a stretching protocol may limit the volume protein gain of soleus muscle fibers and increase the connective interstitial tissue.  相似文献   

19.
Fang Y  Huang XJ  Chen PC  Xu ZK 《BMB reports》2011,44(2):87-95
Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.  相似文献   

20.
Summary Porous glass fiber has a very high surface area and good mechanical properties that make it an excellent support for biocatalyst immobilization. By packing aligned glass fibers in a tubular reactor such that the fibers are all parallel to the axis of the tube, the resulting pressure drop is considerably smaller than for a similar bed of packed beads. The utility of this support was demonstrated by immobilizing -glucoamylase by silane-glutaraldehyde coupling, and measuring its activity toward converting maltose to glucose. Using optimized immobilization conditions, an enzyme loading of 1.5 mg protein perm 2 surface area was obtained, with an activity of 370 units/g glass at 50°C. The half-life of the immobilized glucoamylase was more than twice as long as that of the free enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号