首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mitochondrial morphology dynamically changes in a balance of membrane fusion and fission in response to the environment, cell cycle, and apoptotic stimuli. Here, we report that a novel mitochondrial protein, MICS1, is involved in mitochondrial morphology in specific cristae structures and the apoptotic release of cytochrome c from the mitochondria. MICS1 is an inner membrane protein with a cleavable presequence and multiple transmembrane segments and belongs to the Bi-1 super family. MICS1 down-regulation causes mitochondrial fragmentation and cristae disorganization and stimulates the release of proapoptotic proteins. Expression of the anti-apoptotic protein Bcl-XL does not prevent morphological changes of mitochondria caused by MICS1 down-regulation, indicating that MICS1 plays a role in maintaining mitochondrial morphology separately from the function in apoptotic pathways. MICS1 overproduction induces mitochondrial aggregation and partially inhibits cytochrome c release during apoptosis, regardless of the occurrence of Bax targeting. MICS1 is cross-linked to cytochrome c without disrupting membrane integrity. Thus, MICS1 facilitates the tight association of cytochrome c with the inner membrane. Furthermore, under low-serum condition, the delay in apoptotic release of cytochrome c correlates with MICS1 up-regulation without significant changes in mitochondrial morphology, suggesting that MICS1 individually functions in mitochondrial morphology and cytochrome c release.  相似文献   

2.

Background  

Bcl-2 family proteins are key regulators of mitochondrial integrity and comprise both pro- and anti-apoptotic proteins. Bax a pro-apoptotic member localizes as monomers in the cytosol of healthy cells and accumulates as oligomers in mitochondria of apoptotic cells. The Bcl-2 homology-3 (BH3) domain regulates interactions within the family, but regions other than BH3 are also critical for Bax function. Thus, the N-terminus has been variously implicated in targeting to mitochondria, interactions with BH3-only proteins as well as conformational changes linked to Bax activation. The transmembrane (TM) domains (α5-α6 helices in the core and α9 helix in the C-terminus) in Bax are implicated in localization to mitochondria and triggering cytotoxicity. Here we have investigated N-terminus modulation of TM function in the context of regulation by the anti-apoptotic protein Bcl-xL.  相似文献   

3.
Apoptosis is a genetically determined cell suicide program. Mitochondria play a central role in this process and various molecules have been shown to regulate apoptosis in this organelle. In the present study, we firstly identified that protein tyrosine phosphatase interacting protein 51 (PTPIP51) is a novel mitochondrial protein, which may induce apoptosis in HEK293T and HeLa cell lines. PTPIP51 transfection resulted in the externalization of phosphatidylserine (PS), activation of caspase-3, cleavage of PARP, and condensation of nuclear DNA. Further investigation revealed that PTPIP51 over-expression caused a decrease in mitochondrial membrane potential and release of cytochrome c, suggesting that it may be involved in a mitochondria/cytochrome c mediated apoptosis pathway. We also found that a putative TM domain near the N terminus of PTPIP51 is required for its targeting to mitochondria, as evidenced by the finding that deletion of the PTPIP51 TM domain prevented the protein's mitochondiral localization. Furthermore, this deletion significantly influenced the ability of PTPIP51 to induce apoptosis. Taken together, the results of the present study suggest that PTPIP51 is a mitochondrial protein with apoptosis-inducing function and that the N-terminal TM domain is required for both the correct targeting of the protein to mitochondria and its apoptotic functions.  相似文献   

4.
Cerebellar granule neurons (CGNs) require depolarization for their survival in culture. When deprived of this stimulus, CGNs die via an intrinsic apoptotic cascade involving Bim induction, Bax translocation, cytochrome c release, and caspase-9 and -3 activation. Opening of the mitochondrial permeability transition pore (mPTP) is an early event during intrinsic apoptosis; however, the precise role of mPTP opening in neuronal apoptosis is presently unclear. Here, we show that mPTP opening acts as an initiating event to stimulate Bax translocation to mitochondria. A C-terminal (alpha9 helix) GFP-Bax point mutant (T182A) that constitutively localizes to mitochondria circumvents the requirement for mPTP opening and is entirely sufficient to induce CGN apoptosis. Collectively, these data indicate that the major role of mPTP opening in CGN apoptosis is to trigger Bax translocation to mitochondria, ultimately leading to cytochrome c release and caspase activation.  相似文献   

5.
Proapoptotic members of the Bcl-2 protein family, including Bid and Bax, can activate apoptosis by directly interacting with mitochondria to cause cytochrome c translocation from the intermembrane space into the cytoplasm, thereby triggering Apaf-1-mediated caspase activation. Under some circumstances, when caspase activation is blocked, cells can recover from cytochrome c translocation; this suggests that apoptotic mitochondria may not always suffer catastrophic damage arising from the process of cytochrome c release. We now show that recombinant Bid and Bax cause complete cytochrome c loss from isolated mitochondria in vitro, but preserve the ultrastructure and protein import function of mitochondria, which depend on inner membrane polarization. We also demonstrate that, if caspases are inhibited, mitochondrial protein import function is retained in UV-irradiated or staurosporine-treated cells, despite the complete translocation of cytochrome c. Thus, Bid and Bax act only on the outer membrane, and lesions in the inner membrane occurring during apoptosis are shown to be secondary caspase-dependent events.  相似文献   

6.
Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis   总被引:1,自引:0,他引:1  
Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochrome c release and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.  相似文献   

7.
The mitochondrial uncoupling protein-3 is a member of the mitochondrial carrier protein family. As a homologue of the thermogenic brown fat uncoupling protein-1, it possesses a mitochondrial uncoupling activity and thus can influence cell energy metabolism but its exact biological function remains unclear. In the present study, uncoupling protein-3 was expressed in 293 cells using the tetracycline-inducible system and its impact on cell bioenergetics and responsiveness to the apoptotic stimulus was determined. The induction of uncoupling protein-3 expression in mitochondria did not lead to uncontrolled respiratory uncoupling in intact cells. However, it caused a GDP-inhibition of state 4 respiration and a GDP-induced re-polarization of the inner mitochondrial membrane in the presence of fatty acids, in agreement with its expected physiological behavior as an uncoupling protein (UCP). Uncoupling protein-3 expression did not cause apoptosis per se but increased the responsiveness of the cells to a mitochondrial apoptotic stimulus (i.e., addition of staurosporine in the culture medium). It enhanced caspase 3 and caspase 9 activation and favored cytochrome c release. Moreover, cells in which uncoupling protein-3 expression had been induced showed a higher mitochondrial Bax/Bcl-2 ratio essentially due to enhanced translocation of Bax from cytosol to mitochondria. Finally, the induction of uncoupling protein-3 also increased the sensitivity of mitochondria to open the permeability transition pore in response to calcium. It is concluded that the presence of uncoupling protein-3 in mitochondria sensitizes cells to apoptotic stimuli involving mitochondrial pathways.  相似文献   

8.
Bax is a pro-apoptotic member of the Bcl-2 family of proteins, which is present in the cytosol of various types of cells in full-length form (p21 Bax). During apoptosis, the N-terminal truncated version of Bax (p18 Bax) is often formed via cleavage of the p21 Bax by the calcium-dependent enzyme, calpain. p18 Bax is a membrane protein found primarily in the mitochondrial fraction of apoptotic cells. Although noticeable amounts of p18 Bax appear relatively late in apoptosis, it may still play a role in the apoptotic cascade. The role of p18 Bax in the apoptotic cascade, particularly, in the release of cytochrome c from mitochondria has not been studied. The goal of this study was to produce reasonable amounts of p18 Bax and study its effect on isolated mitochondria. The expression and purification of membrane proteins such as p18 Bax represents a substantial challenge due to insolubility. We report here that the apoptotic form of Bax, p18 Bax, is highly soluble in the absence of detergents upon fusion with maltose-binding protein (MBP). We describe a scheme for expression and simple metal-affinity based purification of MBP-p18Bax. The MBP-p18Bax triggers the release of cytochrome c from isolated mitochondria in a concentration-dependent, Bcl-2-sensitive manner. The MBP tag of the MBP-p18Bax can be cleaved off with 3C protease to produce pure p18 Bax, although the solubility of p18 Bax becomes very limited. The highly soluble, MBP-fused form of p18 Bax provides a convenient tool to study this apoptotic form of Bax protein.  相似文献   

9.

Background

One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear.

Methodology/Principal Findings

To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1.

Conclusions/Significance

Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.  相似文献   

10.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria via the TOM40 (translocase of the mitochondrial outer membrane 40) complex, and follow several distinct sorting pathways to reach their destination submitochondrial compartments. Phosphate carrier (PiC) is an inner membrane protein with 6 transmembrane segments (TM1-TM6) and requires, after translocation across the outer membrane, the Tim9-Tim10 complex and the TIM22 complex to be inserted into the inner membrane. Here we analyzed an in vitro import of fusion proteins between various PiC segments and mouse dihydrofolate reductase. The fusion protein without TM1 and TM2 was translocated across the outer membrane but was not inserted into the inner membrane. The fusion proteins without TM1-TM4 were not inserted into the inner membrane but instead translocated across the inner membrane. Functional defects of Tim50 of the TIM23 complex caused either by depletion of the protein or the addition of anti-Tim50 antibodies blocked translocation of the fusion proteins without TM1-TM4 across the inner membrane, suggesting that lack of TM1-TM4 led to switch of its sorting pathway from the TIM22 pathway to the TIM23 pathway. PiC thus appears to have a latent signal for sorting to the TIM23 pathway, which is exposed by reduced interactions with the Tim9-Tim10 complex and maintenance of the import competence.  相似文献   

11.
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.  相似文献   

12.
A noncleavable signal for mitochondrial import of 3-oxoacyl-CoA thiolase   总被引:1,自引:0,他引:1  
Rat 3-oxoacyl-CoA thiolase, an enzyme of the fatty acid beta-oxidation cycle, is located in the mitochondrial matrix. Unlike most mitochondrial matrix proteins, the thiolase is synthesized with no transient presequence and possesses information for mitochondrial targeting and import in the mature protein of 397 amino acid residues. cDNA sequences encoding various portions of the thiolase were fused in frame to the cDNA encoding the mature portion of rat ornithine transcarbamylase (lacking its own presequence). The fusion genes were transfected into COS cells, and subcellular localization of the fusion proteins was analyzed by cell fractionation with digitonin. When the mature portion of ornithine transcarbamylase was expressed, it was recovered in the soluble fraction. On the other hand, the fusion proteins containing the NH2-terminal 392, 161, or 61 amino acid residues of the thiolase were recovered in the particulate fraction, whereas the fusion protein containing the COOH-terminal 331 residues (residues 62-392) was recovered in the soluble fraction. Enzyme immunocytochemical and immunoelectron microscopic analyses using an anti-ornithine transcarbamylase antibody showed mitochondrial localization of the fusion proteins containing the NH2-terminal portions of the thiolase. These results indicate that the NH2-terminal 61 amino acids of rat 3-oxoacyl-CoA thiolase function as a noncleavable signal for mitochondrial targeting and import of this enzyme protein. Pulse-chase experiments showed that the ornithine transcarbamylase precursor and the thiolase traveled from the cytosol to the mitochondria with half-lives of less than 5 min, whereas the three fusion proteins traveled with half-lives of 10-15 min. Interestingly, in the cells expressing the fusion proteins, the mitochondria showed abnormal shapes and were filled with immunogold-positive crystalloid structures.  相似文献   

13.
Bax is a member of the Bcl-2 family that, together with Bak, is required for permeabilisation of the outer mitochondrial membrane (OMM). Bax differs from Bak in that it is predominantly cytosolic in healthy cells and only associates with the OMM after an apoptotic signal. How Bax is targeted to the OMM is still a matter of debate, with both a C-terminal tail anchor and an N-terminal pre-sequence being implicated. We now show definitively that Bax does not contain an N-terminal import sequence, but does have a C-terminal anchor. The isolated N terminus of Bax cannot target a heterologous protein to the OMM, whereas the C terminus can. Furthermore, if the C terminus is blocked, Bax fails to target to mitochondria upon receipt of an apoptotic stimulus. Zebra fish Bax, which shows a high degree of amino-acid homology with mammalian Bax within the C terminus, but not in the N terminus, can rescue the defective cell-death phenotype of Bax/Bak-deficient cells. Interestingly, we find that Bax mutants, which themselves cannot target mitochondria or induce apoptosis, are recruited to clusters of activated wild-type Bax on the OMM of apoptotic cells. This appears to be an amplification of Bax activation during cell death that is independent of the normal tail anchor-mediated targeting.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) is a human intestinal pathogen and a major cause of diarrhoea, particularly among infants in developing countries. EPEC target the Map and EspF multifunctional effector proteins to host mitochondria - organelles that play crucial roles in regulating cellular processes such as programmed cell death (apoptosis). While both molecules interfere with the organelles ability to maintain a membrane potential, EspF plays the predominant role and is responsible for triggering cell death. To learn more about the Map-mitochondria interaction, we studied Map localization to mitochondria with purified mitochondria (from mammalian and yeast cells) and within intact yeast. This revealed that (i) Map targeting is dependent on the predicted N-terminal mitochondrial targeting sequence, (ii) the N-terminal 44 residues are sufficient to target proteins to mitochondria and (iii) Map import involves the mitochondrial outer membrane translocase (Tom22 and Tom40), the mitochondrial membrane potential, and the matrix chaperone, mtHsp70. These results are consistent with Map import into the mitochondria matrix via the classical import mechanism. As all known, Map-associated phenotypes in mammalian cells are independent of mitochondrial targeting, this may indicate that import serves as a mechanism to remove Map from the cytoplasm thereby regulating cytoplasmic function. Intriguingly, Map, but not EspF, alters mitochondrial morphology with deletion analysis revealing important roles for residues 101-152. Changes in mitochondrial morphology have been linked to alterations in the ability of these organelles to regulate cellular processes providing a possible additional role for Map import into mitochondria.  相似文献   

15.
Bax is a potent pro-apoptotic member of the Bcl-2 protein family that localizes to the mitochondrial membrane during apoptosis. Tauroursodeoxycholic acid (TUDCA) modulates the apoptotic threshold, in part, by preventing Bax translocation both in vitro and in vivo. The mechanisms by which Bax induces and TUDCA inhibits release of cytochrome c are unclear. We show here that recombinant Bax protein induced cytochrome c release in isolated mitochondria without detectable swelling. Co-incubation with TUDCA prevented efflux of mitochondrial factors and proteolytic processing of caspases in cytosolic extracts. Spectroscopic analyses of mitochondria exposed to Bax revealed increased polarity and fluidity of the membrane lipid core as well as altered protein order, indicative of Bax binding, together with loss of spin-label paramagnetism, characteristic of oxidative damage. TUDCA markedly abrogated the Bax-induced membrane perturbation. In conclusion, our results indicate that Bax protein directly induces cytochrome c release from mitochondria through a mechanism that does not require the permeability transition. Rather, it is accompanied by changes in the organization of membrane lipids and proteins. TUDCA is a potent inhibitor of Bax association with mitochondria. Thus, TUDCA modulates apoptosis by suppressing mitochondrial membrane perturbation through pathways that are also independent of the mitochondrial permeability transition.  相似文献   

16.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

17.
Subunit 8 of yeast mitochondrial F1F0-ATPase is a proteolipid made on mitochondrial ribosomes and inserted directly into the inner membrane for assembly with the other F0 membrane-sector components. We have investigated the possibility of expressing this extremely hydrophobic, mitochondrially encoded protein outside the organelle and directing its import back into mitochondria using a suitable N-terminal targeting presequence. This report describes the successful import in vitro of ATPase subunit 8 proteolipid into yeast mitochondria when fused to the targeting sequence derived from the precursor of Neurospora crassa ATPase subunit 9. The predicted cleavage site of matrix protease was correctly recognized in the fusion protein. A targeting sequence from the precursor of yeast cytochrome oxidase subunit VI was unable to direct the subunit 8 proteolipid into mitochondria. The proteolipid subunit 8 exhibited a strong tendency to embed itself in mitochondrial membranes, which interfered with its ability to be properly imported when part of a synthetic precursor.  相似文献   

18.
Yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) is made as a larger precursor with a transient pre-sequence of 25 amino acids. If this pre-sequence is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein) the resulting fusion protein is imported into the matrix space, and cleaved to a smaller size, by isolated yeast mitochondria. We have now fused progressively shorter amino-terminal segments of the subunit IV pre-sequence to dihydrofolate reductase and tested each fusion protein for import into the matrix space and cleavage by the matrix-located processing protease. The first 12 amino acids of the subunit IV pre-sequence were sufficient to direct dihydrofolate reductase into the mitochondrial matrix, both in vitro and in vivo. However, import of the corresponding fusion protein into the matrix was no longer accompanied by proteolytic processing. Fusion proteins containing fewer than nine amino-terminal residues from the subunit IV pre-piece were not imported into isolated mitochondria. The information for transporting attached mouse dihydrofolate reductase into mitochondria is thus contained within the first 12 amino acids of the subunit IV pre-sequence.  相似文献   

19.
Unlike most mitochondrial matrix proteins, the mitochondrial 3-oxoacyl-CoA thiolase [EC 2.3.1.16] is synthesized with no cleavable presequence and possesses information for mitochondrial targeting and import in the mature protein. This mitochondrial thiolase is homologous with the mature portion of peroxisomal 3-oxoacyl-CoA thiolase and acetoacetyl-CoA thiolase [EC 2.3.1.9] of Zoogloea ramigera along the entire sequence. A hybrid gene encoding the NH2-terminal 16 residues (MALLRGVFIVAAKRTP) of the mitochondrial thiolase fused to the mature portion of rat ornithine carbamoyltransferase [EC 2.1.3.3] (lacking its own presequence) was transfected into COS cells, and subcellular localization of the fusion protein was analyzed. Cell fractionation and immunocytochemical analyses showed that the fusion protein was localized in the mitochondria. These results indicate that the NH2-terminal 16 residues of the mitochondrial thiolase function as a noncleavable signal for mitochondrial targeting and import of this enzyme protein. The fusion protein containing the NH2-terminal 14 residues (MSTPSIVIASARTA) of the bacterial thiolase was also localized in the mitochondria. On the other hand, the fusion protein containing the corresponding portion (MQASASDVVVVHGQRTP) of the peroxisomal thiolase appeared not to be localized to the mitochondria. These results show that the import signal of mitochondrial 3-oxoacyl-CoA thiolase originated from the NH2-terminal portion of the ancestral thiolase. The ancestral enzyme might have already possessed a mitochondrial import activity when mitochondria appeared first, or that it might have acquired the import activity during evolution by accumulation of point mutations in the NH2-terminal portion of the enzyme.  相似文献   

20.
Mitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号