首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.  相似文献   

2.
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.  相似文献   

3.
The cdc2 protein kinase is an important regulatory protein for both meiosis and mitosis. Previously, we demonstrated that simultaneous mutation of Thr14-->Ala14 and Tyr15-->Phe15 in the Xenopus cdc2 protein results in an activated cdc2 mutant that induces maturation in resting oocytes. In addition, we confirmed the importance of the positive regulatory phosphorylation site, Thr161, by demonstrating that cdc2 mutants containing additional mutations of Thr161-->Ala161 or Glu161 are inactive in the induction of oocyte maturation. Here, we have analyzed the importance of an additional putative cdc2 phosphorylation site,Ser277. Single mutation of Ser277-->Asp277 or Ala277 had no effect on activity, and these mutants were unable to induce Xenopus oocyte maturation. However, the double mutant Ala161/Asp277 was capable of inducing oocyte maturation, suggesting that mutation of Ser277-->Asp277 could compensate for the mutation of Thr161-->Ala161. The Asp277 mutation could also compensate for the Ala161 mutation in the background of the activating mutations Ala14/Phe15. Although mutants containing the compensatory Ala161 and Asp277 mutations were capable of inducing oocyte maturation, these mutant cdc2 proteins lacked detectable in vitro kinase activity. Tryptic phosphopeptide mapping of mutant cdc2 protein and comparison with in vitro synthesized peptides indicated that Ser277 is not a major site of phosphorylation in Xenopus oocytes; however, we cannot rule out the possibility of phosphorylation at this site in a biologically active subpopulation of cdc2 molecules. The data presented here, together with prior reports of Ser277 phosphorylation in somatic cells, suggest an important role for Ser277 in the regulation of cdc2 activity. The regulatory role of Ser277 most likely involves its indirect effects on the nearby residue Arg275, which participates in a structurally important ion pair with Glu173, which lies in the same loop as Thr161 in the cdc2 protein.  相似文献   

4.
We have measured the levels of cyclin mRNAs and polypeptides during oogenesis, progesterone-induced oocyte maturation, and immediately after egg activation in the frog, Xenopus laevis. The mRNA for each cyclin is present at a constant level of approximately 5 x 10(7) molecules per oocyte from the earliest stages of oogenesis until after fertilization. The levels of polypeptides show more complex patterns of accumulation. The B-type cyclins are first detectable in stage IV and V oocytes. Cyclin B2 polypeptide is present at approximately 2 x 10(9) molecules (150 pg) per oocyte by stage VI. The amount increases after progesterone treatment, but returns to its previous level after GVBD and undergoes no further change until it is destroyed at fertilization. Cyclin B1 is present at 4 x 10(8) molecules per oocyte in stage VI oocytes, and rises steadily during maturation, ultimately reaching similar levels to cyclin B2 in unfertilized eggs. Unlike the B-type cyclins, cyclin A is barely detectable in stage VI oocytes, and only starts to be made in significant amounts after oocytes are exposed to progesterone. A portion of all the cyclins are destroyed after germinal vesicle breakdown (GVBD), and cyclins B1 and B2 also experience posttranslational modifications during oocyte maturation. Progesterone strongly stimulates both cyclin and p34cdc2 synthesis in these oocytes, but whereas cyclin synthesis continues in eggs and after fertilization, synthesis of p34cdc2 declines strongly after GVBD. The significance of these results is discussed in terms of the activation and inactivation of maturation-promoting factor.  相似文献   

5.
Using a polyclonal antibody raised against B2 cyclin from Xenopus laevis, we show that prophase-arrested Xenopus oocytes contain a stockpile of cyclin B2 protein. During progesterone-induced maturation, an increase in the synthesis of cyclin B2 is observed, although Western blotting experiments show that this new synthesis does not significantly increase the mass of cyclin over the maternal stockpile. In the oocyte cyclin B2 is already present in two forms which differ in the extent of phosphorylation, but the phosphorylated form becomes predominant as oocytes progress towards germinal vesicle breakdown (GVBD), coincident with cdc2 protein kinase activation. These two events do not depend upon formation of a new complex between cyclin and cdc2 protein kinase, since these two proteins are already found associated in resting oocytes, prior to activation of the kinase.  相似文献   

6.
We have investigated the mechanisms responsible for the sudden activation of the cdc2-cyclin B protein kinase before mitosis. It has been found previously that cdc25 is the tyrosine phosphatase responsible for dephosphorylating and activating cdc2-cyclin B. In Xenopus eggs and early embryos a cdc25 homologue undergoes periodic phosphorylation and activation. Here we show that the catalytic activity of human cdc25-C phosphatase is also activated directly by phosphorylation in mitotic cells. Phosphorylation of cdc25-C in mitotic HeLa extracts or by cdc2-cyclin B increases its catalytic activity. cdc25-C is not a substrate of the cyclin A-associated kinases. cdc25-C is able to activate cdc2-cyclin B1 in Xenopus egg extracts and to induce Xenopus oocyte maturation, but only after stable thiophosphorylation. This demonstrates that phosphorylation of cdc25-C is required for the activation of cdc2-cyclin B and entry into M-phase. Together, these studies offer a plausible explanation for the rapid activation of cdc2-cyclin B at the onset of mitosis and the self-amplification of MPF observed in vivo.  相似文献   

7.
Phosphorylation of p34cdc2 can both positively and negatively regulate its kinase activity. We have mapped two phosphorylation sites in Xenopus p34cdc2 to Thr-14 and Tyr-15 within the putative ATP-binding region of p34cdc2. Mutation of these sites to Ala-14 and Phe-15 has no effect on the final histone H1 kinase activity of the cyclin/p34cdc2 complex. Phosphopeptide analysis shows that there is at least one more site of phosphorylation on p34cdc2. When Thr-161 is changed to Ala, two phosphopeptide spots disappear and it is no longer possible to activate the H1 kinase activity of p34cdc2. We suggest that Thr-161 is a third site of phosphorylation, which is required for kinase activity. All three phosphorylations are induced by cyclin. None of the phosphorylations appears to be required for binding to cyclin, as indicated by the ability of the triple mutant, Ala-14, Phe-15, Ala-161, to bind cyclin. The activating phosphorylation that requires Thr- or Ser-161 occurs even in a catalytically inactive K33R mutant of p34cdc2 and hence does not appear to be the result of intramolecular autophosphorylation. We have detected an activity in Xenopus extracts required for activation of p34cdc2 and present evidence that this is a p34cdc2 activating kinase which, in a cyclin-dependent manner, probably directly phosphorylates Thr-161.  相似文献   

8.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

9.
Maturation-promoting factor (MPF), a final trigger for initiating oocyte maturation, is activated in the oocyte cytoplasm, in response to maturation-inducing hormone (MIH) secreted from follicle cells surrounding the oocyte. MPF consists of cdc2 and cyclin B. We investigated the state of cdc2 and cyclin B in immature and mature oocytes of fishes (carp, catfish and lamprey) and amphibians ( Xenopus, frog [ Rana ] and toad [ Bufo ]) using monoclonal antibodies raised against mouse cdc2, which also recognize fish and amphibian cdc2, and monoclonal antibodies against goldfish cyclin B1 and polyclonal antibodies against Xenopus cyclins B1 and B2. Anti-cdc2 and anti-cyclin B immunoblotting of oocyte extracts fractionated by gel filtration chromatography showed that immature oocytes from all of these species with the exception of Xenopus contained only monomeric cdc2. Cyclin B-bound inactive cdc2 (pre-MPF) was present only in immature Xenopus oocytes. Cdc2-cyclin B complex was, however, found in mature oocytes from all the species examined. After the oocyte is induced to mature by MIH, cdc2 should therefore bind to cyclin B in all of these species, except Xenopus. These results suggest that the complex formation of cdc2 and cyclin B in response to MIH stimulation at the oocyte surface is a critical step for initiating oocyte maturation in fishes and amphibians, with the exception of Xenopus , in which pre-MPF already exists in immature oocytes and only its chemical modification is required for MPF activation.  相似文献   

10.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

11.
Previous studies from this laboratory have shown that purified MPF from Xenopus eggs contains cyclin B2 complexed with cdc2 kinase. The activation of MPF during oocyte maturation is known to require expression of the c-mos(xe) proto-oncogene. We show here that immunoprecipitates of either v-mos from Moloney murine sarcoma virus-transformed NIH 3T3 cells or c-mos from Xenopus eggs phosphorylate cyclin B2 in vitro. Phosphopeptide analysis reveals a pattern similar to that observed with cdc2 kinase. Moreover, ablation of c-mos(xe) from oocytes by antisense oligonucleotide injection reduces the rate of cyclin B2 phosphorylation in oocyte extracts by 40%. These results suggest that the mechanism of activation of MPF by c-mos(xe) involves phosphorylation of the cyclin component.  相似文献   

12.
c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation.   总被引:2,自引:0,他引:2  
Fully-grown G2 arrested Xenopus oocytes can be induced to enter and progress into meiotic cell cycle by progesterone stimulation. This process is termed oocyte maturation. An early response to progesterone is the synthesis of the onco-protein c-Mos, defined as the candidate initiator of Xenopus oocyte maturation, which triggers the MAPK cascade, MPF activation and promotes CSF activity. Here we review our current knowledge on the synthesis, activation and functions of c-Mos in connection with MPF activation during maturation. We also discuss our recent results concerning the dispensability of cyclin B degradation in meiosis I-meiosis II transition and the stabilization of c-Mos through its direct phosphorylation by cyclin B/cdc2.  相似文献   

13.
Under the influence of maturation-inducing hormone (MIH) secreted from follicle cells, oocyte maturation is finally triggered by maturation-promoting factor (MPF), which consists of a homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. Two species of cyclin B clones were isolated from a cDNA library constructed from mature goldfish oocytes. Sequence comparisons revealed that these two clones are highly homologous (95%) and were found to be similar to Xenopus cyclin B1. Using monoclonal antibodies against Escherichia coli-produced goldfish cyclin B and the PSTAIR sequence of p34cdc2, we examined the levels of cyclin B and p34cdc2 proteins during goldfish oocyte maturation induced in vitro by 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), a natural MIH in fish. Protein p34cdc2 was found in immature oocyte extracts and did not remarkably change during oocyte maturation. Cyclin B was not detected in immature oocyte extracts and appeared when oocytes underwent germinal vesicle breakdown. Cyclin B that appeared during oocyte maturation was labelled with [35S]methionine, indicating its de novo synthesis. Introduction of E. coli-produced cyclin B into immature oocyte extracts induced p34cdc2 (MPF) activation. Although the possibility that immature goldfish oocytes contain an insoluble cyclin B is not completely excluded, these results strongly suggest that 17 alpha, 20 beta-DP induces oocytes to synthesize cyclin B, which in turn activates preexisting p34cdc2, forming active MPF.  相似文献   

14.
In mammalian oocytes, meiosis arrests at prophase I. Meiotic resumption requires activation of Maturation-Promoting Factor (MPF), comprised of a catalytic Cyclin-dependent kinase-1 (Cdk1) and a regulatory subunit cyclin B, and results in germinal vesicle breakdown (GVBD). Cyclic AMP (cAMP)-mediated Protein Kinase A (PKA) activity sustains prophase arrest by inhibiting Cdk1. However, the link between PKA activity and MPF inhibition remains unclear. Cdc25 phosphatases can activate Cdks by removing inhibitory phosphates from Cdks. Thus one method for sustaining prophase arrest could be inhibition of the activity of the Cdc25 protein required for MPF activation. Indeed, studies in Xenopus identify Cdc25C as a target of PKA activity in meiosis. However, in mice, studies suggest that Cdc25B is the phosphatase essential for GVBD and, therefore, the likely target of PKA activity. To assess these questions, we targeted a potential PKA substrate, a highly conserved serine 321 residue of Cdc25B and evaluated the effect on oocyte maturation. A Cdc25B-Ser321Ala point mutant mRNA induces GVBD when injected into prophase-arrested oocytes more rapidly than wild type mRNA. Using fluorescently-tagged proteins we also determined that the mutant protein enters the nucleus more rapidly than its wildtype counterpart. These data suggest that phosphorylation of the Ser321 residue plays a key role in the negative regulation and localization of Cdc25B during prophase arrest. PKA also phosphorylates a wildtype Cdc25B protein but not a Ser321Ala mutant protein in vitro. Mutation of Ser321 in Cdc25B also affects its association with a sequestering protein, 14-3-3. Our studies suggest that Cdc25B is a direct target of PKA in prophase-arrested oocytes and that Cdc25B phosphorylation results in its inhibition and sequestration by the 14-3-3 protein.  相似文献   

15.
Caldesmon is phosphorylated by cdc2 kinase during mitosis, resulting in the dissociation of caldesmon from microfilaments. To understand the physiological significance of phosphorylation, we generated a caldesmon mutant replacing all seven cdc2 phosphorylation sites with Ala, and examined effects of expression of the caldesmon mutant on M-phase progression. We found that microinjection of mutant caldesmon effectively blocked early cell division of Xenopus embryos. Similar, though less effective, inhibition of cytokinesis was observed with Chinese hamster ovary (CHO) cells microinjected with 7th mutant. When mutant caldesmon was introduced into CHO cells either by protein microinjection or by inducible expression, delay of M-phase entry was observed. Finally, we found that 7th mutant inhibited the disassembly of microfilaments during mitosis. Wild-type caldesmon, on the other hand, was much less potent in producing these three effects. Because mutant caldesmon did not inhibit cyclin B/cdc2 kinase activity, our results suggest that alterations in microfilament assembly caused by caldesmon phosphorylation are important for M-phase progression.  相似文献   

16.
Morphological and biochemical changes indicative of cytoplasmic maturation in relation to nuclear maturation progression and early embryo developmental potential was studied. Fluorescently labeled microfilaments and cortical granules were visualized by using laser scanning confocal microscopy. The mitogen-activated protein (MAP) kinase phosphorylation and cyclin B1 levels were revealed by Western blot. With the maturation of oocytes, cortical granules and microfilaments were localized at the cell cortex. A cortical granule-free domain (CGFD) and an actin-thickening area were observed over both the MII spindle of a mature oocyte and chromosomes of a nocodazole-treated oocyte, suggesting that chromosomes, but not the spindle, determined the localization of CGFD and actin-thickening area. In oocytes that are incompetent to resume meiosis, as indicated by the failure of germinal vesicle breakdown (GVBD), peripheral localization of cortical granules and microfilaments, phosphorylation of MAP kinase and synthesis of cyclin B1 did not occur after 44 hr in vitro. These cytoplasmic changes were also blocked when GVBD of meiotically competent oocytes was inhibited by cycloheximide. Culture of oocytes in a chemically defined medium showed that biological factors such as gonadotropins, cumulus cells and follicle size affected both nuclear and cytoplasmic maturation as well as embryo developmental potential. Absence of gonadotropins or removal of cumulus cells alone did not significantly influence GVBD or cyclin B1 levels, but decreased the final maturation and developmental ability of oocytes. A combination of gonadotropin absence and cumulus removal decreased GVBD, MAP kinase phosphorylation and embryo development. A high proportion of oocytes derived from small follicles were able to resume meiosis, synthesize cyclin B(1), phosphorylate MAP kinase and translocate CGs, but their maturation and embryo developmental ability were limited. Removal of cumulus cells from small follicle-derived oocytes severely affected their ability to undergo cytoplasmic and nuclear maturation.  相似文献   

17.
We have investigated the relationship between Xenopus laevis c-mos (mosXe) and the cyclin B component of maturation-promoting factor. Microinjection of Xenopus oocytes with in vitro-synthesized RNAs encoding Xenopus cyclin B1 or cyclin B2 induces the progression of meiosis, characterized by germinal vesicle breakdown (GVBD). By preinjecting oocytes with a mosXe-specific antisense oligonucleotide, we show that GVBD induced by cyclin B does not require expression of the mosXe protein. GVBD induced by cyclin B proceeds significantly faster than GVBD induced by progesterone or MosXe. However, coinjection of RNAs encoding cyclin B1 or cyclin B2 with mosXe RNA results in a 2.5- to 3-fold acceleration in GVBD relative to that induced by cyclin B alone. This acceleration of GVBD does not correlate with changes in the level of cyclin B1 and cyclin B2 phosphorylation.  相似文献   

18.
Maturation-promoting factor (MPF), a complex of Cdc2 and cyclin B, is the final inducer of oocyte maturation. Its activity is controlled by inhibitory phosphorylation of Cdc2 on Tyr15/Thr14 and activating phosphorylation on Thr161. Full-grown immature oocytes of the African clawed frog Xenopus laevis contain inactive MPF (pre-MPF) that comprises cyclin B-bound Cdc2 phosphorylated on Tyr15/Thr14 and Thr161. The synthesis of Mos, but not cyclin B, after stimulation by the maturation-inducing steroid progesterone, is believed to be necessary for initiating Xenopus oocyte maturation through Tyr15/Thr14 dephosphorylation of pre-MPF. In contrast, amphibians other than Xenopus (and also fishes) employ a different mechanism. Full-grown immature oocytes of these species contain monomeric Cdc2 but not cyclin B. MPF is formed after hormonal stimulation by binding of the newly produced cyclin B to the pre-existing Cdc2 and is immediately activated through Thr161 phosphorylation. Mos/MAP kinase is neither necessary nor sufficient for initiating maturation in fishes and amphibians except for Xenopus. We propose a new model of MPF formation and activation during oocyte maturation that is applicable to all amphibians (as well as fishes), based on a novel concept that pre-MPF is an artificial molecule that is not essential for inducing oocyte maturation.  相似文献   

19.
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation. Mol. Reprod. Dev. 50:499–509, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The FLRRXSK sequence is conserved in the second cyclin box fold of B-type cyclins. We show that this conserved sequence in Xenopus cyclin B2, termed the RRASK motif, is required for the substrate recognition by the cyclin B-Cdc2 complex of Cdc25C. Mutations to charged residues of the RRASK motif of cyclin B2 abolished its ability to activate Cdc2 kinase without affecting its capacity to bind to Cdc2. Cdc2 bound to the cyclin B2 RRASK mutant was not dephosphorylated by Cdc25C, and as a result, the complex was inactive. The cyclin B2 RRASK mutants can form a complex with the constitutively active Cdc2, but a resulting active complex did not phosphorylate a preferred substrate Cdc25C in vitro, although it can phosphorylate the non-specific substrate histone H1. The RRASK mutations prevented the interaction of Cdc25C with the cyclin B2-Cdc2 complex. Consistently, the RRASK mutants neither induced germinal vesicle breakdown in Xenopus oocyte maturation nor activated in vivo Cdc2 kinase during the cell cycle in mitotic extracts. These results suggest that the RRASK motif in Xenopus cyclin B2 plays an important role in defining the substrate specificity of the cyclin B-Cdc2 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号