首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bats are distinct from other mammals in their small genome size as well as their high metabolic rate, possibly related to flight ability. Although the genome sequence has been published in two species, the data lack cytogenetic information. In this study, the size and GC content of each chromosome are measured from the flow karyotype of the mouse-eared bat, Myotis myotis (MMY). The smaller chromosomes are GC-rich compared to the larger chromosomes, and the relative proportions of homologous segments between MMY and human differ among the MMY chromosomes. The MMY genome size calculated from the sum of the chromosome sizes is 2.25 Gb, and the total GC content is 42.3 %, compared to human and dog with 41.0 and 41.2 %, respectively. The GC-rich small MMY genome is characterised by GC-biased smaller chromosomes resulting from preferential loss of AT-rich sequences. Although the association between GC-rich small chromosomes and small genome size has been reported only in birds so far, we show in this paper, for the first time, that the same phenomenon is observed in at least one group of mammals, implying that this may be a mechanism common to genome evolution in general.  相似文献   

3.
Parrots (order: Psittaciformes) are the most common captive birds and have attracted human fascination since ancient times because of their remarkable intelligence and ability to imitate human speech. However, their genome organization, evolution and genomic relation with other birds are poorly understood. Chromosome painting with DNA probes derived from the flow-sorted macrochromosomes (1-10) of chicken (Gallus gallus, GGA) has been used to identify and distinguish the homoeologous chromosomal segments in three species of parrots, i.e., Agapornis roseicollis (peach-faced lovebird); Nymphicus hollandicus (cockatiel) and Melopsittacus undulatus (budgerigar). The ten GGA macrochromosome paints unequivocally recognize 14 to 16 hybridizing regions delineating the conserved chromosomal segments for the respective chicken macrochromosomes in these representative parrot species. The cross-species chromosome painting results show that, unlike in many other avian karyotypes with high homology to chicken chromosomes, dramatic rearrangements of the macrochromosomes have occurred in parrot lineages. Among the larger GGA macrochromosomes (1-5), chromosomes 1 and 4 are conserved on two chromosomes in all three species. However, the hybridization pattern for GGA 4 in A. roseicollis and M. undulatus is in sharp contrast to the most common pattern known from hybridization of chicken macrochromosome 4 in other avian karyotypes. With the exception of A. roseicollis, chicken chromosomes 2, 3 and 5 hybridized either completely or partially to a single chromosome. In contrast, the smaller GGA macrochromosomes 6, 7 and 8 displayed a complex hybridization pattern: two or three of these macrochromosomes were found to be contiguously arranged on a single chromosome in all three parrot species. Overall, the study shows that translocations and fusions in conjunction with intragenomic rearrangements have played a major role in the karyotype evolution of parrots. Our inter-species chromosome painting results unequivocally illustrate the dynamic reshuffling of ancestral chromosomes among the karyotypes of Psittaciformes.  相似文献   

4.
Reptiles are a karyologically heterogeneous group, where some orders and suborders exhibit characteristics similar to those of anamniotes and others share similarities with homeotherms. The class also shows different evolutionary trends, for instance in genome and chromosome size and composition. The turtle DNA base composition is similar to that of mammals, whereas that of lizards and snakes is more similar to that of anamniotes. The major karyological differences between turtles and squamates are the size and composition of the genome and the rate at which chromosomes change. Turtles have larger and more variable genome sizes, and a greater amount of middle repetitive DNA that differs even among related species. In lizards and snakes size of the genome are smaller, single-copy DNA is constant within each suborder, and differences in repetitive DNA involve fractions that become increasingly heterogeneous with widening phylogenetic distance. With regard to variation in karyotype morphology, turtles and crocodiles show low variability in chromosome number, morphology, and G-banding pattern. Greater variability is found among squamates, which have a similar degree of karyotypic change-as do some mammals, such as carnivores and bats-and in which there are also differences among congeneric species. An interesting relationship has been highlighted in the entire class Reptilia between rates of change in chromosomes, number of living species, and rate of extinction. However, different situations obtain in turtles and crocodiles on the one hand, and squamates on the other. In the former, the rate of change in chromosomes is lower and the various evolutionary steps do not seem to have entailed marked chromosomal variation, whereas squamates have a higher rate of change in chromosomes clearly related to the number of living species, and chromosomal variation seems to have played an important role in the evolution of several taxa. The different evolutionary trends in chromosomes observed between turtles and crocodiles on the one hand and squamates on the other might depend on their different patterns of G-banding.  相似文献   

5.
太行菊(Opisthopappus taihangensis)、长裂太行菊(O.longilobus),为太行山特有多年生崖壁草本植物,菊科(Compositae)重要野生资源,具有较高的经济与生态价值。为确定适合两物种的全基因组测序策略,该研究利用流式细胞法和高通量测序技术,分析两物种基因组大小、杂合率、重复序列及GC含量等信息。结果表明:(1)流式细胞法估算太行菊基因组大小约为2.1 Gb,长裂太行菊基因组大小约为2.4 Gb。(2)高通量测序修正后太行菊基因组大小为3.13 Gb,重复序列比例为84.35%,杂合度为0.99%,GC含量为36.56%;长裂太行菊基因组为3.18 Gb,重复序列比例为83.83%,杂合度为1.17%,GC含量为36.62%。(3)初步组装后GC含量分布及平均深度存在异常,出现分层现象,可能是两物种基因组杂合率较高所致。综上结果表明,太行菊、长裂太行菊均属于高重复、高杂合、大基因组的复杂基因组,建议使用Illumina+PacBio测序组装策略,进行全基因组测序分析。  相似文献   

6.
Cross-species chromosome painting can directly visualize syntenies between diverged karyotypes and, thus, increase our knowledge on avian genome evolution. DNA libraries of chicken (Gallus gallus, GGA) macrochromosomes 1 to 10 were hybridized to metaphase spreads of 9 different species from 3 different orders (Anseriformes, Gruiformes and Passeriformes). Depending on the analyzed species, GGA1-10 delineated 11 to 13 syntenic chromosome regions, indicating a high degree of synteny conservation. No exchange between the GGA macrochromosome complement and microchromosomes of the analyzed species was observed. GGA1 and GGA4 were distributed on 2 or 3 chromosomes each in some of the analyzed species, indicating rare evolutionary rearrangements between macrochromosomes. In all 6 analyzed species of Passeriformes, GGA1 was diverged on 2 macrochromosomes, representing a synapomorphic marker for this order. GGA4 was split on 2 chromosomes in most karyotypes, but syntenic to a single chromosome in blackcap (Passeriformes). GGA5/10 and also GGA8/9 associations on chromosomes were found to be important cytogenetic features of the Eurasian nuthatch (Passeriformes) karyotype. Fusion of GGA4 and GGA5 segments and of entire GGA6 and GGA7, respectively, was seen in the 2 analyzed species of Gruiformes. Consistent with the literature, our inter-species chromosome painting demonstrates remarkable conservation of macrochromosomal synteny over 100 million years of avian evolution. The low rate of rearrangements between macrochromosomes and the absence of detectable macrochromosome-microchromosome exchanges suggests a predominant role for rearrangements within the gene-dense microchromosome complement in karyotypic diversification.  相似文献   

7.
The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.  相似文献   

8.
Chromosome number changes and karyotype evolution play an important role in plant genome diversification and eventually in speciation. The genus Ajuga L. (Lamiaceae) has approximately 50 species distributed in temperate to subtropical regions. Four of these species are currently recognized in Korea (A. decumbens Thunb., A. multiflora Bunge, A. nipponensis Makino and A. spectabilis Nakai). Understanding the karyotype evolution in Ajuga has been hampered by the small size of their chromosomes and symmetrical karyotypes. Here we used classic Feulgen staining to establish chromosome numbers and construct karyotypes of the four species of Ajuga recognized in Korea and flow cytometry was used to study their variation in genome. The chromosome number of all investigated plants was 2n = 32. Still, the 2C DNA content ranged from 2.18 pg (A. decumbens) to 4.53 pg (A. multiflora). While the chromosome numbers were the same for all investigated species, the genome size variation could potentially be used as a taxonomic marker.  相似文献   

9.
The sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3 were determined by construction of their physical maps on the basis of restriction analysis. As the reported centromeric regions contain large gaps in the middle due to highly repetitive sequences, appropriate probes for Southern hybridization were prepared from the sequences reported for the flanking regions and from the sequences of BAC and YAC clones newly isolated in this work, and restriction analysis was performed using DNA of a hypomethylated strain (ddm1). The sizes of the genetically defined centromeric regions were deduced to be 9 megabases (Mb), 4.2 Mb and 4.1 Mb, respectively (chromosome 1, from markers T22C23-t7 to T3P8-sp6; chromosome 2, from F5J15-sp6 to T15D9; chromosome 3, from T9G9-sp6 to T15M14; G. P. Copenhaver et al. Science, 286, 2468-2479, 1999). By combining the sizes of the centromeric regions previously estimated for chromosomes 4 and 5 and the sequence data reported for the A. thaliana genome, the total genome size of A. thaliana was estimated to be approximately 146.0 Mb.  相似文献   

10.
Shank length affects chicken leg health and longer shanks are a source of leg problems in heavy-bodied chickens. Identification of quantitative trait loci (QTL) affecting shank length traits may be of value to genetic improvement of these traits in chickens. A genome scan was conducted on 238 F2 chickens from a reciprocal cross between the Silky Fowl and the White Plymouth Rock breeds using 125 microsatellite markers to detect static and developmental QTL affecting weekly shank length and growth (from 1 to 12 weeks) in chickens. Static QTL affected shank length from birth to time t , while developmental QTL affected shank growth from time t− 1 to time t . Seven static QTL on six chromosomes (GGA2, GGA3, GGA4, GGA7, GGA9 and GGA23) were detected at ages of 2, 3, 4, 5, 6, 7, 9 and 12 weeks, and six developmental QTL on five chromosomes (GGA1, GGA2, GGA4, GGA5 and GGA23) were detected for five shank growth periods, weeks 2–3, 4–5, 5–6, 10–11 and 11–12. A static QTL and a developmental QTL ( SQSL1 and DQSL2 ) were identified at GGA2 (between ADL0190 and ADL0152 ). SQSL1 explained 2.87–5.30% of the phenotypic variation in shank length from 3 to 7 weeks. DQSL2 explained 2.70% of the phenotypic variance of shank growth between 2 and 3 weeks. Two static and two developmental QTL were involved chromosome 4 and chromosome 23. Two chromosomes (GGA7 and GGA9) had static QTL but no developmental QTL and another two chromosomes (GGA1 and GGA5) had developmental QTL but no static QTL. The results of this study show that shank length and shank growth at different developmental stages involve different QTL.  相似文献   

11.
Wheat is the third most important crop for human nutrition in the world. The availability of high-resolution genetic and physical maps and ultimately a complete genome sequence holds great promise for breeding improved varieties to cope with increasing food demand under the conditions of changing global climate. However, the large size of the bread wheat (Triticum aestivum) genome (approximately 17 Gb/1C) and the triplication of genic sequence resulting from its hexaploid status have impeded genome sequencing of this important crop species. Here we describe the use of mitotic chromosome flow sorting to separately purify and then shotgun-sequence a pair of telocentric chromosomes that together form chromosome 4A (856 Mb/1C) of wheat. The isolation of this much reduced template and the consequent avoidance of the problem of sequence duplication, in conjunction with synteny-based comparisons with other grass genomes, have facilitated construction of an ordered gene map of chromosome 4A, embracing ≥85% of its total gene content, and have enabled precise localization of the various translocation and inversion breakpoints on chromosome 4A that differentiate it from its progenitor chromosome in the A genome diploid donor. The gene map of chromosome 4A, together with the emerging sequences of homoeologous wheat chromosome groups 4, 5 and 7, represent unique resources that will allow us to obtain new insights into the evolutionary dynamics between homoeologous chromosomes and syntenic chromosomal regions.  相似文献   

12.
In a Zoo-FISH study chicken autosomal chromosome paints 1 to 9 (GGA1-GGA9) were hybridized to metaphase spreads of nine diverse birds belonging to primitive and modern orders. This comparative approach allows tracing of chromosomal rearrangements that occurred during bird evolution. Striking homologies in the chromosomes of the different species were noted, indicating a high degree of evolutionary conservation in avian karyotypes. In two species, the quail and the goose, all chicken paints specifically labeled their corresponding chromosomes. In three pheasant species as well as in the American rhea and blackbird, GGA4 hybridized to chromosome 4 and additionally to a single pair of microchromosomes. Furthermore, in the pheasants fission of the ancestral galliform chromosome 2 could be documented. Hybridization of various chicken probes to two different chromosomes or to only the short or long chromosome arm of one chromosome pair in the species representing the orders Passeriformes, Strigiformes, and Columbiformes revealed translocations and chromosome fissions during species radiation. Thus comparative analysis with chicken chromosome-specific painting probes proves to be a rapid and comprehensive approach to elucidate the chromosomal relationships of the extant birds.  相似文献   

13.
Mank JE  Avise JC 《Genetica》2006,127(1-3):321-327
The genomes of ray-finned fishes (Actinopterygii) are well known for their evolutionary dynamism as reflected by drastic alterations in DNA content often via regional and whole-genome duplications, differential patterns of gene silencing or loss, shifts in the insertion-to-deletion ratios of genomic segments, and major re-patternings of chromosomes via non-homologous recombination. In sharp contrast, chromosome numbers in somatic karyotypes have been highly conserved over vast evolutionary timescales – a histogram of available counts is strongly leptokurtic with more than 50% of surveyed species displaying either 48 or 50 chromosomes. Here we employ comparative phylogenetic analyses to examine the evolutionary history of alterations in fish chromosome numbers. The most parsimonious ancestral state for major actinopterygiian clades is 48 chromosomes. When interpreted in a phylogenetic context, chromosome numbers evidence many recent instances of polyploidization in various lineages but there is no clear indication of a singular polyploidization event that has been hypothesized to have immediately preceded the teleost radiation. After factoring out evident polyploidizations, a correlation between chromosome numbers and genome sizes across the Actinopterygii is marginally statistically significant (p = 0.012) but exceedingly weak (R 2 = 0.0096). Overall, our phylogenetic analysis indicates a mosaic evolutionary pattern in which the forces that govern labile features of fish genomes must operate largely independently of those that operate to conserve chromosome numbers.  相似文献   

14.
The karyotypes of most birds consist of a small number of macrochromosomes and numerous microchromosomes. Intriguingly, most accipitrids which include hawks, eagles, kites, and Old World vultures (Falconiformes) show a sharp contrast to this basic avian karyotype. They exhibit strikingly few microchromosomes and appear to have been drastically restructured during evolution. Chromosome paints specific to the chicken (GGA) macrochromosomes 1-10 were hybridized to metaphase spreads of three species of Old World vultures (Gyps rueppelli, Gyps fulvus, Gypaetus barbatus). Paints of GGA chromosomes 6-10 hybridize only to single chromosomes or large chromosome segments, illustrating the existence of high chromosome homology. In contrast, paints of the large macrochromosomes 1-5 show split hybridization signals on the chromosomes of the accipitrids, disclosing excessive chromosome rearrangements which is in clear contrast to the high degree of chromosome conservation substantiated from comparative chromosome painting in other birds. Furthermore, the GGA chromosome paint hybridization patterns reveal remarkable interchromosomal conservation among the two species of the genus Gyps.  相似文献   

15.
Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.  相似文献   

16.
Nuclear DNA content (2C) is reported for all genera of the Cycadales, using flow cytometry with propidium iodide. Nuclear DNA content ranges from 24 to 64 pg in cycads. This implies that the largest genome contains roughly 40 × 10(9) more base pairs than the smallest genome. The narrow range in nuclear DNA content within a genus is remarkable for such an old group. Furthermore, 42 of the 58 plants measured, covering five genera, have 18 chromosomes. They vary from 36.1 to 64.7 pg, covering the whole range of genome sizes (excluding the genome of Cycas). Hence, their does not seem to be a correlation between genome size and the number of chromosomes.  相似文献   

17.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

18.
新疆沙冬青是中国荒漠地区代表性常绿阔叶植物,属于第三纪孑遗植物。其极强的逆境耐受性受到了研究者的广泛关注,但由于缺乏基因组序列,分子生物学研究水平进展缓慢。本研究对新疆沙冬青进行了基因组调查测序,共得到65 Gb大小的双端测序数据。结合基于K-mer分析和流式细胞分析的方法,预测基因组大小、杂合率和GC含量等特征,估计基因组大小为770~787 Mb。测序数据拼接构建得到contigs的N50为684 bp,总读长为0.538 Gb;进一步组装后scaffolds的N50为12.09 kb,总读长为0.602 Gb。对拼接数据进行SSR分子标记预测,共得到151858个SSR,其中二核苷酸重复单元比例最高为56.39%,在二核苷酸重复单元中,AT/TA组成形式占多数。本研究首次报道了荒漠植物新疆沙冬青的基因组特征,为后续基因组学研究提供参考。  相似文献   

19.
Most proterminal regions of human chromosomes are GC-rich and gene-rich. Chromosome 3p is an exception. Its proterminal region is GC-poor, and likely to lose heterozygosity, thus causing a number of fatal diseases. Except one gap left in the telomeric position, the proterminal region of human chromosome 3p has been completely sequenced. The detailed sequence analysis showed: (i) the GC content of this region was 38.5%, being the lowest among all the human proterminal regions; (ii) this region contained 20 known genes and 22 predicted genes, with an average gene size of 97.5 kb. The previously mapped gene Cntn3 was not found in this region, but instead located in the 74 Mb position of human chromosome 3p; (iii) the interspersed repeats of this region were more active than the average level of the whole human genome, especially (TA)n, the content of which was twice the genome average; (iv) this region had a conserved synteny extending from 104.1 Mb to 112.4 Mb on the mouse chromosome 6, which was 8% larger in size, not in accordance with the whole genome comparison, probably because the 3pter-p26 region was more likely to lose neocleitides and its mouse synteny had more active interspersed repeats.  相似文献   

20.
Most proterminal regions of human chromosomes are GC-rich and gene-rich. Chromosome 3p is an exception. Its proterminal region is GC-poor, and likely to lose heterozy-gosity, thus causing a number of fatal diseases. Except one gap left in the telomeric position, the proterminal region of human chromosome 3p has been completely sequenced. The detailed sequence analysis showed: (i) the GC content of this region was 38.5%, being the lowest among all the human proterminal regions; (ii) this region contained 20 known genes and 22 predicted genes, with an average gene size of 97.5 kb. The previously mapped gene Cntn3 was not found in this region, but instead located in the 74 Mb position of human chromosome 3p; (iii) the interspersed repeats of this region were more active than the average level of the whole human genome, especially (TA)n, the content of which was twice the genome average; (iv) this region had a conserved synteny extending from 104.1 Mb to 112.4 Mb on the mouse chromosome 6, which was 8% larger in size, not in accordance with the whole genome comparison, probably because the 3pter-p26 region was more likely to lose neocleitides and its mouse synteny had more active interspersed repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号