首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Using microquantitative measurements of alcohol dehydrogenase activity in microdissected samples of liver tissue along the sinusoidal length, the intra-acinar distribution profiles were studied in seven groups of female rats at different times during 24h with a light phase from 630h to 1830h. The mean values of alcohol dehydrogenase activity showed a circadian rhythm with a minimum at 13.30h and a maximum at 17.30h (p<0.0001). However, the intra-acinar gradients remained almost unchanged, indicating that increase and decrease in enzyme activity takes place simultaneously in all parts of the liver acinus. This observation, together with data from the literature, suggests that the circadian rhythm of alcohol dehydrogenase activity reflects variations in different liver cell consituents, rather than enzyme protein synthesis or proteolysis.  相似文献   

2.
A circadian rhythm in photosynthesis occurs in Phaseolus vulgaris after transfer from a natural or artificial light:dark cycle to constant light. The rhythm in photosynthesis persists even when intercellular CO2 partial pressure is held constant, demonstrating that the rhythm in photosynthesis is not entirely due to stomatal control over the diffusion of CO2. Experiments were conducted to attempt to elucidate biochemical correlates with the circadian rhythm in photosynthesis. Plants were entrained to a 12-hour-day:12-hour-night light regimen and then monitored or sampled during a subsequent period of constant light. We observed circadian oscillations in ribulose-1,5-bisphosphate (RuBP) levels, and to a lesser extent in phosphoglyceric acid (PGA) levels, that closely paralleled oscillations in photosynthesis. However, the enzyme activity and activation state of the enzyme responsible for the conversion of RuBP to PGA, ribulose-1,5-bisphosphate carboxylase/oxygenase, showed no discernible circadian oscillation. Hence, we examined the possibility of circadian effects on RuBP regeneration. Neither ribulose-5-phosphate kinase activity nor the level of ATP fluctuated in constant light. Oscillations in triose-phosphate levels were out of phase with those observed for RuBP and PGA.  相似文献   

3.
The circadian rhythm of CO2 assimilation in detached leaves of Bryophyllum fedtschenkoi at 15° C in normal air and continuous illumination is inhibited both by exposure to darkness, and to an atmosphere enriched with 5% CO2. During such exposures substantial fixation of CO2 takes place, and the malate concentration in the cell sap increases from about 20 mM to a constant value of 40–50 mM after 16 h. On transferring the darkened leaves to light, and those exposed to 5% CO2 to normal air, a circadian rhythm of CO2 assimilation begins again. The phase of this rhythm is determined by the time the transfer is made since the first peak occurs about 24 h afterwards. This finding indicates that the circadian oscillator is driven to, and held at, an identical, fixed phase point in its cycle after 16 h exposure to darkness or to 5% CO2, and it is from this phase point that oscillation begins after the inhibiting condition is removed. This fixed phase point is characterised by the leaves having acquired a high malate content. The rhythm therefore begins with a period of malate decarboxylation which lasts for about 8 h, during which time the malate content of the leaf cells must be reduced to a value that allows phosphoenolpyruvate carboxylase to become active. Inhibition of the rhythm in darkness, and on exposure to 5% CO2 in continuous illumination, appears to be due to the presence of a high concentration of CO2 within the leaf inhibiting malic enzyme which leads to the accumulation of high concentrations of malate in the leaf cells. The malate then allosterically inhibits phosphoenolpyruvate carboxylase upon which the rhythm depends. The results give support to the view that malate synthesis and breakdown form an integral part of the circadian oscillator in this tissue.Abbreviations B. Bryophyllum - PEPCase phosphoenolpyruvate carboxylase  相似文献   

4.
5.
Alanine dehydrogenase was purified to near homogeneity from cell-free extract of Streptomyces aureofaciens, which produces tetracycline. The molecular weight of the enzyme determined by size-exclusion high-performance liquid chromatography was 395 000. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis was 48 000, indicating that the enzyme consists of eight subunits with similar molecular weight. The isoelectric point of alanine dehydrogenase is 6.7. The pH optimum is 10.0 for oxidative deamination of L-alanine and 8.5 for reductive amination of pyruvate. K M values were 5.0 mM for L-alanine and 0.11 mM for NAD+. K M values for reductive amination were 0.56 mM for pyruvate, 0.029 mM for NADH and 6.67 mM for NH4Cl.Abbreviation AlaDH alanine dehydrogenase  相似文献   

6.
7.
8.
Pigment‐dispersing factor (PDF) is an important neurotransmitter in insect circadian systems. In the cricket Gryllus bimaculatus, it affects nocturnal activity, the free‐running period and photic entrainment. In this study, to investigate whether these effects of PDF occur through a circadian molecular machinery, we measured mRNA levels of clock genes period (per) and timeless (tim) in crickets with pdf expression knocked‐down by pdf RNAi. The pdf RNAi decreased per and tim mRNA levels during the night to reduce the amplitude of their oscillation. The phase of the rhythm advanced by about 4 h in terms of trough and/or peak phases. On the other hand, pdf mRNA levels were little affected by per and tim RNAi treatment. These results suggest that PDF affects the circadian rhythm at least in part through the circadian molecular oscillation while the circadian clock has little effect on the pdf expression.  相似文献   

9.
Leaves ofBryophyllum fedtschenkoi show a persistent circadian rhythm in CO2 assimilation when kept in continuous illumination and normal air at 15°C. The induction of phase shifts in this rhythm by exposing the leaves for four hours at different times in the circadian cycle to 40° C, 2° C, darkness and 5% CO2 have been investigated. Exposure to high temperature has no effect on the phase at the apex of the peak but is effective at all other times in the cycle, whereas exposure to low temperature, darkness or 5% CO2 is without effect between the peaks and induces a phase shift at all other times. The next peak of the rhythm occurs 17 h after a 40° C treatment and 7–10 h after a 2° C, dark or 5% CO2 treatment regardless of their position in the cycle. When these treatments are given at times in the cycle when they induce maximum phase shifts, they cause no change in the gross malate status of the leaf. The gross malate content of the leaf in continuous light and normal air at 15% shows a heavily damped circadian oscillation which virtually disappears by the time of the third cycle, but the CO2 assimilation rhythm persists for many days. The generation of the rhythm, and the control of its phase by environmental factors are discussed in terms of mechanisms that involve the synthesis and metabolism of malate in specific localised pools in the cytoplasm of the leaf cells.  相似文献   

10.
Ulrich Lehmann 《Oecologia》1976,23(3):185-199
Summary The activity behaviour of the vole, Microtus agrestis, has been recorded in order to investigate the relationship between short-term rhythm and circadian rhythm. A simple device was developed, allowing separate monitoring of the time spent in or outside the nest, wheel-running, eating and drinking. Under natural light conditions during summer, a distinct differentiation between a short term rhythm of eating and drinking during the day-time and a circadian rhythm of wheel-running during the night was observed. The short-term rhythm depends closely on metabolic demands (hunger, thirst, excretion). Control of these demands by an endogenous oscillation could not be substantiated. The circadian rhythm of wheel-running activity is, however, controlled by an endogenous oscillation, synchronized by light conditions. It is subjected to seasonal variations. a) The threshold of light intensity below which wheel-running occurs is lowest during summer (<0.5 lx) and is higher during spring and autum (> 5 lx). b) Wheel-running is controlled by a circadian oscillation during summer only whereas it is an integrated part of the short-term rhythm during spring and autumn (experiments during the winter have not yet been performed). Experiments gave evidence that the properties of the cage can deeply influence the amount and pattern of wheel-running activity. It is concluded that wheel-running reflects a certain level of excitation, which may be caused by different behavioural intentions. The seasonal changes of the control of wheel-running activity are discussed with respect to this assumption. The relevancy of locomotor activity patterns as usually recorded in the laboratory to reveal the physiological and ecological significance of endogenously controlled behavioural patterns is discussed.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

11.
The circadian rhythm of CO2 output in darkened leaves of Bryophyllum fedtschenkoi R. Hamet and Perrier can be inhibited by cycloheximide (10-6 mol) and 2,4-dinitrophenol (10-5 mol) applied via the transpiration stream. After having been suppressed by 10-6 M cycloheximide, the rhythm can be reinitiated with a 12-h exposure to light. Experiments using 14CO2 show that cycloheximide abolishes the rhythm by inhibiting the dark fixation of CO2. Cycloheximide inhibits malate accumulation and acidification of the leaves, but does not affect the amount of the CO2-fixing enzyme phosphoenol-pyruvate carboxylase (PEP-C, EC 4.1.1.31) which can be extracted from the leaves during the 45 h of the experiment. Cycloheximide has no direct effect on the activity of the enzyme as measured in the assay. PEP-C from desalted leaf extracts was inhibited by L-malate (Ki=0.4 mmol). The most likely explanation for the inhibitory effect of cycloheximide and dinitrophenol is that they cause changes in tonoplast properties which result in a redistribution of malate from the vacuole to the cytoplasm. An increase in malate concentration in the cytoplasm will lead to inhibition of PEP-carboxylase, and hence the suppression of the rhythm of CO2 output.Abbreviations CAM crassulacean acid metabolism - PEP-C phosphoenol-pyruvate carboxylase - MDH malate dehydrogenase - CHM cycloheximide - DNP 2,4-dinitrophenol - LD light-dark-cycle - DD continuous darkness  相似文献   

12.
(Benzamidooxy)acetic acid (common name benzadox) which has herbicidal properties was evaluated as a potential inhibitor of photosynthesis in C4 plants. Among enzymes of the C4 pathway, it was a relatively strong inhibitor of alanine aminotransferase in in vitro experiments at concentrations of 5mM. In benzadox treated leaves of Panicum miliaceum, a NAD-malic enzyme type C4 species, there was strong inhibition of both alanine and aspartate aminotransferase and of photosynthetic O2 evolution within one hour. Consistent with the inhibition of these enzymes of the C4 cycle, the pool sizes of metabolites of the cycle was altered: the aspartate level was increased two fold, while the levels of other metabolites such as pyruvate, alanine, oxalacetate and malate were decreased. Kinetic studies with partially purified alanine aminotransferase showed that benzadox is a competitive inhibitor with respect to alanine and a noncompetitive inhibitor with respect to 2-oxoglutarate. Comparisons between the structures and inhibitory actions of benzadox and (aminooxy)acetic acid, the latter a potent inhibitor of alanine and aspartate aminotransferases, suggest that in vivo, benzadox may exert its effect through metabolism to (aminooxy)acetic acid.Abbreviations benzadox (benzamidooxy)acetic acid - DTE dithioerythritol This research was supported in part by gift funds from Monsanto Agricultural Products Company. St. Louis, Missouri, and by NSF Grant PCM-8107953.  相似文献   

13.
A number of inhibitors of gene expression were tested for their effect on the circadian rhythm of O2 evolution in single nucleate and anucleate cells of Acetabularia. In the presence of actinomycin the rhythm disappeared after about 14 days in nucleate cells. Anucleate cells did not respond to the inhibitor. Rifampicin and chloramphenicol did not affect the rhythm in either nucleate or anucleate cells. Puromycin and cycloheximide inhibited the photosynthesis rhythm in both nucleate and anucleate cells. It was concluded that translation on 80 S ribosomes is essential for the manifestation of the rhythm of O2 evolution in Acetabularia.  相似文献   

14.
M M?ller  P E H?yer 《Histochemistry》1979,59(4):259-269
Succinate dehydrogenase activity was investigated histochemically in the rat pineal gland. The influence of fixation on the activity pattern, the possible diffusion of enzyme, the nothing dehydrogenase reaction, and the substantivity of the tetrazolium salts and formazans were investigated in control experiments. In rats maintained on a 17/7 h light/dark schedule a distinct circadian rhythm of the succinate dehydrogenase was demonstrated in the pineal gland. Activity was lowest during the day and highest during the night. The dorsocaudal part of the gland showed the highest activity and within the same part of the gland the activity varied between individual pinealocytes. A relative lack of endogenous coenzyme Q, as well as a circadian rhythm of this coenzyme, highly influenced the activity of succinate dehydrogenase. It is concluded that succinate dehydrogenase activity in the pineal gland of the rat is regulated by changing the concentration of the active enzyme itself as well as the level of the endogenous coenzyme Q. Whether this is caused by a circadian rhythm in the synthesis or in the catabolism of the enzyme and the coenzyme was not revealed by the present study .  相似文献   

15.
The response of the Euglena gracilis (Klebs strain Z) photosynthesis circadian rhythm to three calmodulin antagonists was examined. In the presence of an antagonist, the photosynthetic reactions were uncoupled from the biological clock. Instead of the highly predictable rhythmic pattern characteristic of a biological clock-controlled circadian rhythm, the photosynthetic rate appears to be influenced by the light/dark cycle. The rate of O2 evolution increases throughout the light portion of the cycle and does not decrease until the cells are exposed to darkness. Shortterm exposure to a calmodulin antagonist (2 hour pulses) failed to cause phase shifts in the timing of the rhythm. This suggests that calmodulin is not part of the clock controlling photosynthesis and that it has a clock-related role different from that reported for the cell division rhythm in Euglena.  相似文献   

16.
Summary Succinate dehydrogenase activity was investigated histochemically in the rat pineal gland. The influence of fixation on the activity pattern, the possible diffusion of enzyme, the nothing dehydrogenase reaction, and the substantivity of the tetrazolium salts and formazans were investigated in control experiments.In rats maintained on a 17/7 h light/dark schedule a distinct circadian rhythm of the succinate dehydrogenase was demonstrated in the pineal gland. Activity was lowest during the day and highest during the night. The dorsocaudal part of the gland showed the highest activity and within the same part of the gland the activity varied between individual pinealocytes. A relative lack of endogenous coenzyme Q, as well as a circadian rhythm of this coenzyme, highly influenced the activity of succinate dehydrogenase. It is concluded that succinate dehydrogenase activity in the pineal gland of the rat is regulated by changing the concentration of the active enzyme itself as well as the level of the endogenous coenzyme Q. Whether this is caused by a circadian rhythm in the synthesis or in the catabolism of the enzyme and the coenzyme was not revealed by the present study.  相似文献   

17.
Summary The mRNA for rat liver serine dehydratase, a gluconeogenic enzyme, exhibits a circadian rhythm with a maximum at the onset of darkness marking the end of the fasting period and a minimum at the onset of light that marks the end of the feeding period, when rats have free access to food and water.In situ hybridization with an antisense cRNA probe revealed that serine dehydratase mRNA was localized in the periportal area of rat liver parenchyma in the evening, whereas it was scarce in the liver in the morning. The predominant localization of serine dehydratase mRNA in the periportal area also occurred in livers of rats that underwent laparotomy, glucagon and dexamethasone administration, and streptozotocin-induced diabetes mellitus, all of which are known to induce serine dehydratase mRNA levels remarkably. Immunostaining revealed that the localization of serine dehydratase protein agreed with that of succinate dehydrogenase, another enzyme known to be predominant in the periportal zone. Thus, the periportal serine dehydratase gene expression strongly supports the idea of metabolic zonation that gluconeogenesis from amino acids occurs preferentially in the periportal parenchyma of rat liver.  相似文献   

18.
Sterol 12 alpha-hydroxylase (CYP8B) is a key enzyme for regulating the cholic acid/chenodeoxycholic acid ratio in bile acid biosynthesis. The hepatic CYP8B level was elevated in streptozotocin-induced diabetic rats, and the elevated CYP8B was suppressed by insulin administration [Ishida, H. et al. (1999) J. Biochem. 126, 19-25]. The streptozotocin-induced elevation of hepatic CYP8B mRNA concomitantly responded to the decrement of the serum insulin level. The CYP8B mRNA level in the cultivated rat hepatoma H4TG cells was strongly suppressed by insulin, although it was affected by dibutyryl cAMP or thyroxine to lesser extents. These observations demonstrate that CYP8B expression is dominantly regulated by the direct action of insulin on hepatocytes. A marked circadian rhythm (maximum at 13:00-16:00 and minimum at 1:00) was observed both on the mRNA level and the activity of CYP8B. This rhythm was shifted from that of cholesterol 7 alpha-hydroxylase, a rate-limiting enzyme of bile acid biosynthesis, showing a maximum at 22:00 and a minimum at 10:00, and this shift might oscillate the cholic acid/chenodeoxycholic acid ratio, which is increased in the late afternoon and decreased at midnight. The rhythm of CYP8B was the inverse of the circadian variation of serum insulin level and was similar to the circadian rhythm of glucose 6-phosphatase. These facts and the potent suppressive effect of insulin on CYP8B indicate that the oscillation of the serum insulin may be a factor in producing the circadian rhythm of CYP8B.  相似文献   

19.
The heavy metal cadmium is a dangerous environmental toxicant that can be lethal to humans and other organisms. This paper demonstrates that cadmium is lethal to the ciliated protozoan Paramecium tetraurelia and that a circadian clock modulates the sensitivity of the cells to cadmium. Various concentrations of cadmium were shown to increase the number of behavioral responses, decrease the swimming speed of cells, and generate large vacuole formation in cells prior to death. Cells were grown in either 12-h light/12-h dark or constant dark conditions exhibited a toxic response to 500 μM CdCl2; the sensitivity of the response was found to vary with a 24-h periodicity. Cells were most sensitive to cadmium at circadian time 0 (CT0), while they were least sensitive in the early evening (CT12). This rhythm persisted even when the cells were grown in constant dark. The oscillation in cadmium sensitivity was shown to be temperature-compensated; cells grown at 18°C and 28°C had a similar 24-h oscillation. Finally, phase shifting experiments demonstrated a phase-dependent response to light. These data establish the criteria required for a circadian clock and demonstrate that P. tetraurelia possesses a circadian-influenced regulatory component of the cadmium toxic response. The Paramecium system is shown to be an excellent model system for the study of the effects of biological rhythms on heavy metal toxicity.  相似文献   

20.
An enzyme that reduces benzoylformate with NADH to form (R)-mandelate was extracted from cells of Streptococcus faecalis IFO 12964 and purified to more than 95% purity as evidenced by gel electrophoresis. Physicochemical and enzymic properties were studied. From the substrate specificity, we concluded that the enzyme was a kind of (R)-2-hydroxyisocaproate dehydrogenase. Optically pure (R)-(—)-mandelic acid was prepared with the enzyme, NADH, and alcohol, formate or glucose dehydrogenase in 84~93% yield. Five (R)-2-hydroxyalkanoic acids (C4~C6) or their Ba salts, (R)-(+)-3-phenyllactic acid and (S)-(—)-3-chlorolactic acid were also prepared with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号