首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
T Gavrilenko  J Larkka  E Pehu  V M Rokka 《Génome》2002,45(2):442-449
GISH (genomic in situ hybridization) was applied for the analysis of mitotic chromosome constitutions of somatic hybrids and their derivatives between dihaploid clones of cultivated potato (Solanum tuberosum L.) (2n = 2x = 24, AA genome) and the diploid, non-tuberous, wild species Solanum brevidens Phil. (2n = 2x = 24, EE genome). Of the primary somatic hybrids, both tetraploid (2n = 4x) and hexaploid (2n = 6x) plants were found with the genomic constitutions of AAEE and AAEEEE, respectively. Androgenic haploids (somatohaploids) derived from the tetraploid somatic hybrids had the genomic constitutions of AE (2n = 2x = 24) and haploids originating from the hexaploid hybrids were triploid AEE (2n = 3x = 33 and 2n = 3x = 36). As a result of subsequent somatic hybridization from a fusion between dihaploid S. tuberosum (2n = 2x = 24, genome AA) and a triploid somatohaploid (2n = 3x = 33, genome AEE), second-generation somatic hybrids were obtained. These somatic hybrids were pentaploids (2n = 5x, genome AAAEE), but had variable chromosome numbers. GISH analysis revealed that both primary and second-generation somatic hybrids had lost more chromosomes of S. brevidens than of S. tuberosum.  相似文献   

2.
Solanum brevidens is a wild diploid potato species possessing high levels of resistances to several major potato diseases. We previously developed fertile somatic hybrids between S. brevidens and the cultivated potato (Solanum tuberosum) in order to introgress disease resistances from this wild species into potato. A series of backcross progenies was developed from a hexaploid somatic hybrid A206. Using a combination of S. brevidens-specific randomly amplified polymorphic DNA (RAPD) markers and a sequential genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) technique, we identified all 12 S. brevidens chromosomes in the backcross progenies. Seven potato-S. brevidens monosomic chromosome addition lines (chromosomes 1, 3, 4, 5, 8, 9 and 10) and one monosomic substitution line (chromosome 6) were identified, and the remaining four S. brevidens chromosomes (2, 7, 11, and 12) were included in two other lines. These chromosomal addition/substitution stocks provide valuable tools for potato cytogenetic research, and can be used to introgress disease resistances from S. brevidens into potato.  相似文献   

3.
Somatic hybrids have been obtained between potato and Solanum bulbocastanum PI 245310, a Mexican diploid (2n=2x=24) species. Through restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD) analyses it was found that the somatic hybrids contain each chromosome of the diploid parent and that the synteny of RFLP markers noted with tomato, potato and S. brevidens is largely maintained in S. bulbocastanum. RFLP analyses of BC1 progeny of two different hybrids indicated that a substantial number of markers were either lost or were heterozygous, in marked contrast with results previously noted with S. brevidens. A RAPD map for all 12 chromosomes of S. bulbocastanum was prepared and marker transmission was followed in three BC2 populations. Results with chromosomes 3, 8 and 10 from these populations are compared.  相似文献   

4.
J. M. McGrath  S. M. Wielgus    J. P. Helgeson 《Genetics》1996,142(4):1335-1348
The Solanum brevidens genome (2n = 2x = 24) was examined with randomly applied polymorphic DNA (RAPD) markers in a second backcross population derived from a S. brevidens + S. tuberosum somatic hybrid. RAPD markers cosegregated into 12 different S. brevidens synteny groups. Most synteny groups were nonrecombinant. However, nearly 40% of the S. brevidens synteny groups detected in this population were recombinant deletions that carried at least one, but not all, synteny group-specific RAPD markers. All S. brevidens synteny groups (except chromosome 5) were involved in recombination, and recombination occurred within most intervals between markers. About 20% of the recombinant S. brevidens synteny groups involved a single synteny group-specific marker. The inheritance of some single-marker representatives was followed in four BC(3) families. At least nine changes in S. brevidens synteny groups had occurred during backcrossing. Six of the nine changes involved translocation of S. brevidens markers between nonhomologous S. brevidens chromosomes, and three S. brevidens markers may have been introgressed into the potato genome.  相似文献   

5.
Somatic hybrids between the wild incongruent species Solanum bulbocastanum (2n = 2x = 24) and S. tuberosum haploids (2n = 2x = 24) have been characterized for their nuclear and cytoplasmic genome composition. Cytologic observations revealed the recovery of 8 (near-)tetraploid and 3 hexaploid somatic hybrids. Multicolor genomic in situ hybridization (GISH) analysis was carried out to study the genomic dosage of the parental species in 5 somatic hybrids with different ploidy. The GISH procedure used was effective in discriminating parental genomes in the hybrids; most chromosomes were unambiguously colored. Two (near-)tetraploid somatic hybrids showed the expected 2:2 cultivated-to-wild genomic dosage; 2 hexaploids revealed a 4:2 cultivated-to-wild genomic dosage, and 1 hexaploid had a 2:4 cultivated-to-wild genomic dosage. Characterization of hybrid cytoplasmic genomes was performed using gene-specific primers that detected polymorphisms between the fusion parents in the intergenic regions. The analysis showed that most of the somatic hybrids inherited the plastidial and mitochondrial DNA of the cultivated parent. A few hybrids, with a rearranged mitochondrial genome (showing fragments derived from both parents), were also identified. These results confirmed the potential of somatic hybridization in producing new variability for genetic studies and breeding.  相似文献   

6.
Electrofusion was used to obtain somatic hybrids between Solanum etuberosum (2n=2x=24) and two diploid potato lines. These hybridizations were conducted to determine if haploidxwild species hybrids are better fusion partners than conventional S. tuberosumGp. Tuberosum haploids. Restriction fragment length polymerase (RFLP) analyses of the putative somatic hybrids confirmed that each parental genome was present. The somatic hybrids between S. etuberosum and a haploid S. tuberosum clone, US-W730, were stunted and had curled, purple leaves. In contrast, somatic hybrids between S. etuberosum and a haploidxwild species hybrid (US-W 730 haploidx S. berthaultii), were vigorous and generally tuberized under field conditions. These hybrids were designated as E+BT somatic hybrids. Analyses of 23 E+BT somatic hybrids revealed a statistically significant bias towards the retention of S. etuberosum chloroplasts. Stylar incompatibilities were observed when the E+BT somatic hybrids were used as pollen donors in crosses with S. tuberosum cultivars. Reciprocal crosses did not show this incompatibility. The progeny were vigorous and had improved tuber traits when compared to the maternal E+BT parent. RFLP analyses of three sexual progeny lines confirmed the presence of all 12 S. etuberosum chromosomes. In two of these lines, RFLPs that marked each of the 24 chromosome arms of S. etuberosum were present. However, RFLP markers specific for regions on chromosomes 2, 7, and 11 were missing from the third clone. Because other markers for these chromosomes were present in the progeny line, these results indicated the likelihood of pairing and recombination between S. etuberosum and S. tuberosum chromosomes.  相似文献   

7.
Solanum acaule Bitt., a wild potato species, is closely related to cultivated potato (Solanum. tuberosum L.). Incorporation of desirable traits from allotetraploid [2n=4x=48, 2 endosperm balance number (EBN)] S. acaule (acl) into autotetraploid (2n=4x=48, 4EBN) S. tuberosum (tbr) is difficult due to incongruity boundaries. In this study, three hybrid combinations, each with a specific genome constitution, were produced through protoplast fusion: (1) hexaploid 2x acl (+) 4x tbr, (2) tetraploid 2x acl (+) 2x tbr, and (3) hexaploid 4x acl (+) 2x tbr hybrids. In terms of glycoalkaloid aglycones, the hybrids produced demissidine, tomatidine and solanidine, similarly to the S. acaule parental species, but S. tuberosum synthesised only solanidine. Inoculations with Clavibacter michiganensis ssp. sepedonicus (Cms), which is the causal agent of bacterial ring rot in potato, yielded significantly lower total glycoalkaloid aglycone accumulation both in S. acaule plants and in interspecific hybrids in comparison with the corresponding mock-inoculated plants. However, in S. tuberosum the aglycone levels were either higher or unchanged as a result of infection by Cms. To incorporate the desirable traits of the interspecific somatic hybrids into 4EBN S. tuberosum, sexual backcrosses were carried out. The hexaploid 4x acl (+) 2x tbr hybrids with the hypothetical 4EBN showed the greatest capacity to undergo backcrosses with S. tuberosum.  相似文献   

8.
Somatic hybrids between potato and Solanum bulbocastanum, a wild diploid (2n=2x=24) Mexican species, are highly resistant to late blight, caused by Phytophthora infestans. Both randomly amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers that are closely linked to the resistance have been noted by analysis of three different backcross-2 populations derived from two different somatic hybrids. With reference to previously published potato and tomato maps, resistance appears to be on the long arm of chromosome 8 and is flanked by RFLP markers CP53 and CT64. In a population of BC2 plants derived from a cross between the BC1 line J10lK6 [(S. tuberosum PI 203900+S. bulbocastanum PI 243510) ×Katahdin)]×Atlantic, late blight resistance cosegregated with RFLP marker CT88 and RAPD marker OPG02–625. Received: 26 November 1999 / Accepted: 22 December 1999  相似文献   

9.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

10.
Solanum bulbocastanum, a wild, diploid (2n=2x=24) Mexican species, is highly resistant to Phytophthora infestans, the fungus that causes late blight of potato. However this 1 EBN species is virtually impossible to cross directly with potato. PEG-mediated fusion of leaf cells of S. bulbocastanum PI 245310 and the tetraploid potato line S. tuberosum PI 203900 (2n=4x=48) yielded hexaploid (2n= 6x=72) somatic hybrids that retained the high resistance of the S. bulbocastanum parent. RFLP and RAPD analyses confirmed the hybridity of the materials. Four of the somatic hybrids were crossed with potato cultivars Katahdin or Atlantic. The BC1 progeny segregated for resistance to the US8 genotype (A-2 mating type) of P. Infestans. Resistant BC1 lines crossed with susceptible cultivars again yielded populations that segregated for resistance to the fungus. In a 1996 field-plot in Wisconsin, to which no fungicide was applied, two of the BC1 lines, from two different somatic hybrids, yielded 1.36 and 1.32 kg/plant under a severe late-blight epidemic. In contrast, under these same conditions the cultivar Russet Burbank yielded only 0.86 kg/plant. These results indicate that effective resistance to the late-blight fungus in a sexually incompatible Solanum species can be transferred into potato breeding lines by somatic hybridization and that this resistance can then be further transmitted into potato breeding lines by sexual crossing. Received: 27 October 1997 / Accepted: 11 November 1997  相似文献   

11.
A protoplast fusion strategy has been applied to advance aspects of a potato breeding programme. A sub-population of somatic hybrids, selected for agronomic potential, between tetraploid Solanum tuberosum cv. Brodick and a diploid EBN2 accession, S. sanctae-rosae was subjected to detailed molecular analysis. This study reports the use of simple sequence repeats (SSRs) to identify nuclear hybrid genomes and PCR and DNA-DNA analysis to determine organelle composition in somatic hybrids derived from these parents. SSR analysis revealed somatic hybrids containing the genetic background of S. tuberosum cv. Brodick with some specific markers from S. sanctae-rosae. One somatic hybrid contained the chloroplasts derived from S. sanctae-rosae, and several hybrids had detectable RFLP mitochrondrial DNA profiles, indicating genetic re-arrangements. We also examined the use of DNase I sensitivity to the genomic and ribosomal RNA sequences in these somatic hybrids as an indicator of changes in chromatin structure. Chromatin and DNAse I analysis showed differential sensitivity to increasing levels of nuclease; DNA from several somatic hybrids was found to be resistant to DNase I compared to the parental plants. The significance of the findings to somatic cell genetics and plant breeding studies is discussed. Received: 6 July 1999 / Accepted: 29 February 2000  相似文献   

12.
Ribosomal RNA genes were exploited as markers to identify somatic hybrids between Solanum tuberosum cv. Brodick and wild diploid Solanum species, S. megistacrolobum, S. sanctae-rosae and S. sparsipilum and DNA methylation as a possible regulatory factor in gene expression was investigated. Specific restriction enzyme/probe combinations revealed useful polymorphisms in the conserved coding and variable intergenic spacer regions of the ribosomal RNA genes. Some intermediate ribosomal RNA gene profiles indicate hybridity whereas others were characteristic of S. tuberosum cv. Brodick. This evidence is suggestive of somatic exchange/re-arrangement between the NOR region of S. sanctae-rosae and S. tuberosum cv. Brodick. Ribosomal RNA gene copy number analysis of the somatic hybrids did not reveal hexaploid values suggesting that these products are not symmetric hybrids derived from the parental diploid and tetraploid plants. The results indicate site-specific methylation of ribosomal RNA gene sequences for the parental plants; while some somatic hybrids display a reduction, others show an increase. The significance of the findings for somatic cell genetics and plant breeding studies is discussed.  相似文献   

13.
Y Samitsu  K Hosaka 《Génome》2002,45(3):577-583
Clones with 24 or 25 chromosomes were obtained by pollinating an Andean cultivated tetraploid potato (Solanum tuberosum subsp. andigena clone 94H94, 2n = 4x = 48) with the Solanum phureja haploid-inducer clone 1.22. Their genetic composition was analyzed in an RAPD assay using 135 decamer primers and in an RFLP assay using 45 single-copy DNA probes. In total, 22 RAPD and 20 RFLP markers were found to be specific to S. phureja. None of these markers were found in the 24- and 25-chromosome clones. RFLP genotypes for the 45 RFLP loci were further determined for each clone. Genotypes of the 24-chromosome clones were characterized using two alleles randomly selected from four alleles of the parental tetraploid clone for almost all RFLP loci. Five 25-chromosome clones had extra alleles for all of the RFLP loci of chromosomes 4, 8, 10, 11, and 12, respectively, suggesting primary trisomy for one of these chromosomes. Clones with genotypes showing double reduction were also identified. Therefore, the obtained clones likely originated from random samples of female gametes, and hence are euhaploids or aneuhaploids of S. tuberosum subsp. andigena, strongly supporting parthenogenesis to be a primary mechanism for haploid induction in potato.  相似文献   

14.
The efficiency of an original approach to involvement of the valuable genetic pool of wild diploid potato species from Mexico is estimated. The essence of this method is in generation of dihaploids (2n = 2x = 24) of tetraploid somatic hybrids (2n = 4x = 48) followed by backcrossing with dihaploids of Solanum tuberosum. A haploid producer, S. phureja IvP35, was used to generate ten dihaploids of S. tuberosum + S. pinnatisectum, all of which crossed with fertile S. tuberosum dihaploids and developed plump viable seeds. This gives the possibility of an efficient introgression of the genes valuable for breeding from wild species to the bred plants at a diploid level, which has several advantages compared with the corresponding procedure at a tetraploid level. A part of the dihaploids produced was compatible (the pollen tubes reached the ovary) with diploid and tetraploid forms of S. pinnatisectum; however, no viable seeds were developed. The attempt to generate the dihaploids of S. tuberosum + S. bulbocastanum somatic hydrides using the haploid producer S. phureja IvP35 was unsuccessful.  相似文献   

15.
Cytogenetic analysis of five Solanum lycopersicoides monosomic alien addition lines of tomato was carried out. Meiotic analysis showed that additional chromosomes caused serious abnormalities. It was demonstrated that different chromosomes of S. lycopersicoides had different effects on chromosome pairing. For instance, associations formed between chromosomes II and IV of S. lycopersicoides and chromosomes of cultured tomato were trivalents, while chromosome XI in all cells was present as a univalent. Pachytene analysis showed that chromosomes of homeologous group II paired at their long arms, and their nucleolus organizer regions were of different sizes. The use of molecular markers provided accelerated identification of the introgression of S. lyvcopersicoides genetic material.  相似文献   

16.
Somatic fusion of mesophyll protoplasts was used to produce hybrids between the frost-tolerant species Solanum commersonii (2n=2x=24) and dihaploid S. tuberosum (2n=2x=24). This is a sexually incompatible combination due to the difference in EBN (Endosperm Balance Number, Johnston et al. 1980). Species with different EBNs as a rule are sexually incompatible. Fifty-seven hybrids were analysed for variation in chromosome number, morphological traits, fertility and frost tolerance. About 70% of the hybrids were tetraploid, and 30% hexaploid. Chloroplast counts in stomatal guard cells revealed a low frequency of cytochimeras. The frequency of aneuploids was relatively higher at the hexaploid level (hypohexaploids) than at the tetraploid level (hypotetraploids). The somatic hybrids were much more vigorous than the parents, and showed an intermediate phenotype for several morphological traits and moderate to profuse flowering. Hexaploid hybrid clones were less vigorous and had a lower degree of flowering than the tetraploid hybrid clones. All of the hybrids were female fertile but male sterile except for one, which was fully fertile and self-compatible. Many seeds were produced on the latter clone by selfing and on the male-sterile clones by crossing. The somatic hybrid plants showed an introgression of genes for frost tolerance and an adaptability to cold from S. commersonii. Therefore, the use of these somatic hybrids in breeding for and in genetic esearch on frost tolerance and cold-hardening is suggested.  相似文献   

17.
Summary Restriction fragment length polymorphism (RFLP) markers were used to distinguish the chromosomes of Solanum brevidens from those of potato (S. tuberosum) in a fertile somatic hybrid. The hybrid had markers that account for all 24 chromosome arms from each parent, indicating that the hybrid contained at least one copy of each chromosome from each parent. The markers were then used to follow segregation of chromosomes in sexual progeny that resulted from a cross of the somatic hybrid with the potato cultivar Katahdin. Approximately 10% of the sexual progeny lacked one or more of the markers specific to S. brevidens. No one chromosome or marker appeared to be lost preferentially. This infrequent absence of a chromosome marker derived from the wild parent could be explained by intergenomic pairing and recombination. The loss of a marker band for chromosome 8, coupled with the retention of two flanking markers, suggested that a small region of DNA was deleted during regeneration of the somatic hybrid. These results show the value of RFLP analysis when applied to somatic hybrids and their progeny. Clearly, RFLPs will be useful for following the DNA from wild species during its introgression into potato cultivars.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

18.
Interspecific somatic hybrids between the 1EBN-wild species Solanum pinnatisectum (S. pnt) and four different diploid breeding lines of Solanum tuberosum (S. tbr) were produced by electrofusion. S. pnt exhibits resistance to Phytophthora infestans and Erwinia blackleg. Somatic hybrids were identified by RFLP analysis using the oligonucleotide (GATA)4 as a probe. In three of four combinations all regenerates obtained were somatic hybrids. All 86 somatic hybrids between the breeding line H256/1 and S. pnt were analyzed in detail with respect to morphological and molecular characters; 50% of the somatic hybrids showed normal intermediate leaf morphology. Tubers of somatic hybrid plants grown in the greenhouse as well as in the field were evenly shaped and remarkably similar to those of the S. tbr breeding line. Analysis of relative DNA content by flow cytometry revealed that 75% of the somatic hybrids were tetraploid, some were hypotetraploid and others polyploid or mixoploid. Slotblot and RFLP analyses were carried out using repetitive and some single-copy DNA probes. The genome portion of the S. tbr breeding line was determined by slot-blot analysis using the species-specific repetitive probe pSA287. Obviously, most somatic hybrids contain the complete genomes of both fusion partners. In some of the somatic hybrids, a significantly lower intensity of the S. pnt-specific hybridization signal indicated a certain degree of asymmetry.Dedicated to Prof. Melchers on the occasion of his 90th birthday  相似文献   

19.
Summary Somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum have been produced by the electrofusion of mesophyll protoplasts in a movable multi-electrode fusion chamber. Using hair structure as a selection criteria, we identified a total of 19 somatic hybrids, which represented an overall average of 15.3% of the 124 regenerated plants obtained in the two fusion experiments. Several morphological traits were intermediate to those of the parents, including trichome density and structure, height, leaf form and inflorescence. Cytological analyses revealed that the chromosome numbers of the somatic hybrids approximated the expected tetraploid level (2n=4x=48). Fifteen hybrid plants were homogeneous and had relatively stable chromosome numbers (46–48), while four other hybrids had variable chromosome numbers (35–48) and exhibited greater morphological variation. The hybridity of these 19 somatic hybrid plants was confirmed by analyses of phosphoglucomutase (Pgm) and esterase zymograms.  相似文献   

20.
An original approach to overcome interspecific incompatibility when backcrossing the tetraploid Solanum tuberosum + S. bulbocastanum somatic hybrids with cultivated potato was realized. This method is based on the decrease in their ploidy using anther culture and involvement of the haploid producer S. phureja IvP35. The feasibility of obtaining a diploid progeny from the somatic hybrids carrying genetic material of the wild species S. bulbocastanum and crossable with S. tuberosum dihaploids was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号