首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

2.
CO2 applied for Free-Air CO2 Enrichment (FACE) experiments is strongly depleted in 13C and thus provides an opportunity to study C turnover in soil organic matter (SOM) based on its δ 13C value. Simultaneous use of 15N labeled fertilizers allows N turnover to be studied. Various SOM fractionation approaches (fractionation by density, particle size, chemical extractability etc.) have been applied to estimate C and N turnover rates in SOM pools. The thermal stability of SOM coupled with C and N isotopic analyses has never been studied in experiments with FACE. We tested the hypothesis that the mean residence time (MRT) of SOM pools is inversely proportional to its thermal stability. Soil samples from FACE plots under ambient (380 ppm) and elevated CO2 (540 ppm; for 3 years) treatments were analyzed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). Based on differential weight losses (TG) and energy release or consumption (DSC), five SOM pools were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ 13C and δ 15N by IRMS. Energy consumption and mass losses in the temperature range 20–200°C were mainly connected with water volatilization. The maximum weight losses occurred from 200–310°C. This pool contained the largest amount of carbon: 61% of the total soil organic carbon in soil under ambient treatment and 63% in soil under elevated CO2, respectively. δ 13C values of SOM pools under elevated CO2 treatment showed an increase from −34.3‰ of the pool decomposed between 20–200°C to −18.1‰ above 480°C. The incorporation of new C and N into SOM pools was not inversely proportional to its thermal stability. SOM pools that decomposed between 20–200 and 200–310°C contained 2 and 3% of the new C, with a MRT of 149 and 92 years, respectively. The pool decomposed between 310–400°C contained the largest proportion of new C (22%), with a MRT of 12 years. The amount of fertilizer-derived N after 2 years of application in ambient and elevated CO2 treatments was not significantly different in SOM pools decomposed up to 480°C having MRT of about 60 years. In contrast, the pool decomposed above 480°C contained only 0.5% of new N, with a MRT of more than 400 years in soils under both treatments. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. Responsible Editor: Bernard Nicolardot.  相似文献   

3.
Loiseau  P.  Soussana  J.F. 《Plant and Soil》1999,210(2):233-247
The effects of elevated [CO2] (700 μl l-1 CO2) and temperature increase (+3 °C) on carbon turnover in grassland soils were studied during 2.5 years at two N fertiliser supplies (160 and 530 kg N ha-1 y-1) in an experiment with well-established ryegrass swards (Lolium perenne) supplied with the same amounts of irrigation water. During the growing season, swards from the control climate (350 μl l-1 [CO2] at outdoor air temperature) were pulse labelled by the addition of 13CO2. The elevated [CO2] treatments were continuously labelled by the addition of fossil-fuel derived CO2 (13 C of -40 to -50 ‰). Prior to the start of the experimental treatments, the carbon accumulated in the plant parts and in the soil macro-organic matter (‘old’ C) was at −32‰. During the experiment, the carbon fixed in the plant material (‘new’ C) was at −14 and −54‰ in the ambient and elevated [CO2] treatments, respectively. During the experiment, the 13C isotopic mass balance method was used to calculate, for the top soil (0–15 cm), the carbon turnover in the stubble and roots and in the soil macro-organic matter above 200 μ (MOM). Elevated [CO2] stimulated the turnover of organic carbon in the roots and stubble and in the MOM at N+, but not at N−. At the high N supply, the mean replacement time of ‘old’ C by ‘new’ C declined in elevated, compared to ambient [CO2], from 18 to 7 months for the roots and stubble and from 25 to 17 months for the MOM. This resulted from increased rates of ‘new’ C accumulation and of ‘old’ C decay. By contrast, at the low N supply, despite an increase in the rate of accumulation of ‘new’ C, the soil C pools did not turnover faster in elevated [CO2], as the rate of ‘old’ C decomposition was reduced. A 3 °C temperature increase in elevated [CO2] decreased the input of fresh C to the roots and stubble and enhanced significantly the exponential rate for the ‘old’ C decomposition in the roots and stubble. An increased fertiliser N supply reduced the carbon turnover in the roots and stubble and in the MOM, in ambient but not in elevated [CO2]. The respective roles for carbon turnover in the coarse soil OM fractions, of the C:N ratio of the litter, of the inorganic N availability and of a possible priming effect between C-substrates are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The mechanisms behind the 13C enrichment of organic matter with increasing soil depth in forests are unclear. To determine if 13C discrimination during respiration could contribute to this pattern, we compared δ13C signatures of respired CO2 from sieved mineral soil, litter layer and litterfall with measurements of δ13C and δ15N of mineral soil, litter layer, litterfall, roots and fungal mycelia sampled from a 68-year-old Norway spruce forest stand planted on previously cultivated land. Because the land was subjected to ploughing before establishment of the forest stand, shifts in δ13C in the top 20 cm reflect processes that have been active since the beginning of the reforestation process. As 13C-depleted organic matter accumulated in the upper soil, a 1.0‰ δ13C gradient from −28.5‰ in the litter layer to −27.6‰ at a depth of 2–6 cm was formed. This can be explained by the 1‰ drop in δ13C of atmospheric CO2 since the beginning of reforestation together with the mixing of new C (forest) and old C (farmland). However, the isotopic change of the atmospheric CO2 explains only a portion of the additional 1.0‰ increase in δ13C below a depth of 20 cm. The δ13C of the respired CO2 was similar to that of the organic matter in the upper soil layers but became increasingly 13C enriched with depth, up to 2.5‰ relative to the organic matter. We hypothesise that this 13C enrichment of the CO2 as well as the residual increase in δ13C of the organic matter below a soil depth of 20 cm results from the increased contribution of 13C-enriched microbially derived C with depth. Our results suggest that 13C discrimination during microbial respiration does not contribute to the 13C enrichment of organic matter in soils. We therefore recommend that these results should be taken into consideration when natural variations in δ13C of respired CO2 are used to separate different components of soil respiration or ecosystem respiration.  相似文献   

5.
It is unclear how changing atmospheric composition will influence the plant–soil interactions that determine soil organic matter (SOM) levels in fertile agricultural soils. Positive effects of CO2 fertilization on plant productivity and residue returns should increase SOM stocks unless mineralization or biomass removal rates increase in proportion to offset gains. Our objectives were to quantify changes in SOM stocks and labile fractions in prime farmland supporting a conventionally managed corn–soybean system and the seasonal dynamics of labile C and N in soybean in plots exposed to elevated [CO2] (550 ppm) under free-air concentration enrichment (FACE) conditions. Changes in SOM stocks including reduced C/N ratios and labile N stocks suggest that SOM declined slightly and became more decomposed in all plots after 3 years. Plant available N (>273 mg N kg−1) and other nutrients (Bray P, 22–50 ppm; extractable K, 157–237 ppm; Ca, 2,378–2,730 ppm; Mg, 245–317 ppm) were in the high to medium range. Exposure to elevated [CO2] failed to increase particulate organic matter C (POM-C) and increased POM-N concentrations slightly in the surface depth despite known increases (≈30%) in root biomass. This, and elevated CO2 efflux rates indicate accelerated decay rates in fumigated plots (2001: elevated [CO2]: 10.5 ± 1.2 μmol CO2 m−2 s−1 vs. ambient: 8.9 ± 1.0 μmol CO2 m−2 s−1). There were no treatment-based differences in the within-season dynamics of SOM. Soil POM-C and POM-N contents were slightly greater in the surface depth of elevated than ambient plots. Most studies attribute limited ability of fumigated soils to accumulate SOM to N limitation and/or limited plant response to CO2 fertilization. In this study, SOM turnover appears to be accelerated under elevated [CO2] even though soil moisture and nutrients are non-limiting and plant productivity is consistently increased. Accelerated SOM turnover rates may have long-term implications for soil’s productive potential and calls for deeper investigation into C and N dynamics in highly-productive row crop systems.  相似文献   

6.
Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.  相似文献   

7.
We used the dual isotope method to study differences in nitrate export in two subwatersheds in Vermont, USA. Precipitation, soil water and streamwater samples were collected from two watersheds in Camels Hump State Forest, located within the Green Mountains of Vermont. These samples were analyzed for the δ15N and δ18O of NO3. The range of δ15N–NO3 values overlapped, with precipitation −4.5‰ to +2.0‰ (n = 14), soil solution −10.3‰ to +6.2‰ (n = 12) and streamwater +0.3‰ to +3.1‰ (n = 69). The δ18O of precipitation NO3 (mean 46.8 ± 11.5‰) was significantly different (P < 0.001) from that of the stream (mean 13.2 ± 4.3‰) and soil waters (mean 14.5 ± 4.2‰) even during snowmelt periods. Extracted soil solution and streamwater δ18O of NO3 were similar and within the established range of microbially produced NO3, demonstrating that NO3 was formed by microbial processes. The δ15N and δ18O of NO3 suggests that although the two tributaries have different seasonal NO3 concentrations, they have a similar NO3 source.  相似文献   

8.
Kuzyakov  Y.  Kretzschmar  A.  Stahr  K. 《Plant and Soil》1999,213(1-2):127-136
Carbon rhizodeposition and root respiration during eight development stages of Lolium perenne were studied on a loamy Gleyic Cambisol by 14CO2 pulse labelling of shoots in a two compartment chamber under controlled laboratory conditions. Total 14CO2 efflux from the soil (root respiration, microbial respiration of exudates and dead roots) in the first 8 days after 14C pulse labelling decreased during plant development from 14 to 6.5% of the total 14C input. Root respiration accounted for was between 1.5 and 6.5% while microbial respiration of easily available rhizodeposits and dead root remains were between 2 and 8% of the 14C input. Both respiration processes were found to decline during plant development, but only the decrease in root respiration was significant. The average contribution of root respiration to total 14CO2 efflux from the soil was approximately 41%. Close correlation was found between cumulative 14CO2 efflux from the soil and the time when maximum 14CO2 efflux occurred (r=0.97). The average total of CO2 Defflux from the soil with Lolium perenne was approximately 21 μg C-CO2 d−1 g−1. It increased slightly during plant development. The contribution of plant roots to total CO2 efflux from the soil, calculated as the remainder from respiration of bare soil, was about 51%. The total 14C content after 8 days in the soil with roots ranged from 8.2 to 27.7% of assimilated carbon. This corresponds to an underground carbon transfer by Lolium perenne of 6–10 g C m−2 at the beginning of the growth period and 50–65 g C m−2 towards the end of the growth period. The conventional root washing procedure was found to be inadequate for the determination of total carbon input in the soil because 90% of the young fine roots can be lost. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P < 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose. Received: 18 March 1997 / Accepted: 5 August 1997  相似文献   

10.
M. Werth  Y. Kuzyakov 《Plant and Soil》2006,284(1-2):319-333
Coupling 13C natural abundance and 14C pulse labelling enabled us to investigate the dependence of 13C fractionation on assimilate partitioning between shoots, roots, exudates, and CO2 respired by maize roots. The amount of recently assimilated C in these four pools was controlled by three levels of nutrient supply: full nutrient supply (NS), 10 times diluted nutrient supply (DNS), and deionised water (DW). After pulse labelling of maize shoots in a 14CO2 atmosphere, 14C was traced to determine the amounts of recently assimilated C in the four pools and the δ13C values of the four pools were measured. Increasing amounts of recently assimilated C in the roots (from 8% to 10% of recovered 14C in NS and DNS treatments) led to a 0.3‰ 13C enrichment from NS to DNS treatments. A further increase of C allocation in the roots (from 10% to 13% of recovered 14C in DNS and DW treatments) resulted in an additional enrichment of the roots from DNS to DW treatments by 0.3‰. These findings support the hypothesis that 13C enrichment in a pool increases with an increasing amount of C transferred into that pool. δ13C of CO2 evolved by root respiration was similar to that of the roots in DNS and DW treatments. However, if the amount of recently assimilated C in root respiration was reduced (NS treatment), the respired CO2 became 0.7‰ 13C depleted compared to roots. Increasing amounts of recently assimilated C in the CO2 from NS via DNS to DW treatments resulted in a 1.6‰ δ13C increase of root respired CO2 from NS to DW treatments. Thus, for both pools, i.e. roots and root respiration, increasing amounts of recently assimilated C in the pool led to a δ13C increase. In DW and DNS plants there was no 13C fractionation between roots and exudates. However, high nutrient supply decreased the amount of recently assimilated C in exudates compared to the other two treatments and led to a 5.3‰ 13C enrichment in exudates compared to roots. We conclude that 13C discrimination between plant pools and within processes such as exudation and root respiration is not constant but strongly depends on the amount of C in the respective pool and on partitioning of recently assimilated C between plant pools. Section Editor: H. Lambers  相似文献   

11.
Pregitzer K  Loya W  Kubiske M  Zak D 《Oecologia》2006,148(3):503-516
The aspen free-air CO2 and O3 enrichment (FACTS II–FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8–26%) compared to the control treatment in both community types over all three growing seasons. In years 6–7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15–25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60–80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4–6‰ enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil respiration that was temporarily 4–6‰ more depleted in 13C. Up to 50% of the Earth’s forests will see elevated concentrations of both CO2 and O3 in the coming decades and these interacting atmospheric trace gases stimulated soil respiration in this study.  相似文献   

12.
Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.  相似文献   

13.
This study examines the effect of elevated atmospheric carbon dioxide [CO2] (+340 ppm, 13C-depleted) and/or elevated air temperature (2.8–3.5°C) on the rate and δ13C of soil respiration. The study was conducted in a boreal Norway spruce forest using temperature-controlled whole-tree chambers and 13C as a marker for root respiration. The δ13C of needle carbohydrates was followed after the onset of the CO2 treatment in August 2001 and during a 2.5-week period in the summer of 2002. Averaged over the growing seasons of 2002 and 2003, we observed a 48% and 62% increase, respectively, in soil respiration in response to elevated [CO2], but no response to elevated air temperature. The percentage increase in response to elevated [CO2] varied seasonally (between 10% and 190% relative to the control), but the absolute increase varied less (39 ± 11 mg C m−2 h−1; mean ± SD). Data on δ13C of soil respiration indicate that this increase in soil respiration rate resulted from increased root/rhizosphere respiration of recently fixed carbon. Our results support the hypothesis that root/rhizosphere respiration is sensitive to variation in substrate availability.  相似文献   

14.
This study aims to assess the effects of corrections for disturbances such as an increased amount of dead roots and an increase in volumetric soil water content on the calculation of soil CO2 efflux partitioning. Soil CO2 efflux, soil temperature and superficial soil water content were monitored in two young beech sites (H1 and H2) during a trenching experiment. Trenching induced a significant input of dead root mass that participated in soil CO2 efflux and reduced the soil dissolved organic carbon content, while it increased superficial soil water content within the trenched plot. Annual soil CO2 efflux in control plots was 528 g C m−2 year−1 at H1 and 527 g C m−2 year−1 at H2. The annual soil CO2 efflux in trenched plots was 353 g C m−2 year−1 at H1 and 425 g C m−2 year−1 at H2. By taking into account annual CO2 efflux from decaying trenched roots, the autotrophic contribution to total soil CO2 efflux reached 69% at H1 and 54% at H2. The partitioning calculation was highly sensitive to the initial root mass estimated within the trenched plots. Uncertainties in the remaining root mass, the fraction of root C that is incorporated into soil organic matter during root decomposition, and the root decomposition rate constant had a limited impact on the partitioning calculation. Corrections for differences in superficial soil water content had a significant impact on annual respired CO2 despite a limited effect on partitioning.  相似文献   

15.
Schmidt  Susanne  Stewart  George R.  Ashwath  N. 《Plant and Soil》1999,215(1):73-84
Biologically driven markers or monitors were used to evaluate plant and ecosystem health of uranium-mining affected sites. Plant water, nitrogen (N) and phosphorus (P) status were used to measure physiological characteristics of tree and shrub species at sites perturbed by mining activities (waste rock dumps: WRD 1, WRD 2; mine wastewater irrigated woodland) and of species at undisturbed woodland (tropical savanna). Plant water status was evaluated by measuring leaf relative water content (RWC) and carbon isotope discrimination (δ13C). Leaf RWC varied significantly (P<0.0001) between wet and dry season in species at the woodland sites with higher RWC in the wet season compared to the dry season. No seasonal differences were observed in RWC in species at the WRDs. Leaf δ13C was similar in species at woodland sites and WRD 2 (−28.8 to −28.1‰) but was significantly (P<0.05) lower in species at WRD 1 (−27.6‰). This suggests that species at WRD 1 had a lower water availability and/or lower water use compared to species at all other sites. WRD substrate had an up to 4-orders of magnitude greater availability of inorganic phosphate (Pi) compared to woodland soil as determined using in situ ion exchange resin. Pi concentrations in xylem sap of species at WRDs were 2- to 3-fold higher compared to species at woodland sites. Plant nitrate reductase (NR) activity was low in most species at woodland and WRD 1. In contrast, Eucalyptus and Acacia species had high NR activities of up to 300–700 pkat g-1 fw at WRD 2 indicating that these species had greater nitrate use than species at all other sites. Nitrate availability in the top five cm of the profile, as determined using in situ ion exchange resins, increased at all sites in the wet season, but no significant differences were observed between sites using this method. However, traditional soil analysis revealed that WRD substrate had a 2-times higher nitrate content (0 to 1000 mm depth) compared to woodland soil. Thus, it is likely that plants at WRD2 accessed nitrate from deeper parts of the profile. Proline, an indicator of plant stress, was found in appreciable quantities in leaves of herbaceous species but not in woody species. Soil and leaf δ15N were measured to investigate N-cycling and the contribution of diazotrophic N2 fixation to plant N nutrition. Soil δ15N values were highest and most variable at WRD 2 (6.2‰) compared to all other sites (irrigated woodland 3.1‰, undisturbed woodland 2.5‰, WRD 1 0.9‰). This may indicate that N-turnover and nitrification was greatest at WRD 2 leading to greater 15N enrichment of soil N. At all sites, Acacia species were nodulated and putatively fixing N2. With the exception of WRD 2 where leaf δ15N of Acacia species averaged 0.9‰, Acacia species had 15N depleted values characteristic of species that receive N derived from N2 fixation (−0.8 to −0.6‰). Eucalyptus species at the woodland also had 15N depleted values (average −0.4‰) but 15N enriched values (0.3 to 1.8‰) at the three mining affected sites. The results show that for the plants studied foliar δ15N could not be used as an unequivocal measure of plant N sources. The results suggest that biomonitoring of plant and ecosystem health has potential in evaluating performance of mine site revegetation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L?1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.  相似文献   

17.
Carbon dioxide is released from the soil to the atmosphere in heterotrophic respiration when the dead organic matter is used for substrates for soil micro-organisms and soil animals. Respiration of roots and mycorrhiza is another major source of carbon dioxide in soil CO2 efflux. The partitioning of these two fluxes is essential for understanding the carbon balance of forest ecosystems and for modelling the carbon cycle within these ecosystems. In this study, we determined the carbon balance of three common tree species in boreal forest zone, Scots pine, Norway spruce, and Silver birch with gas exchange measurements conducted in laboratory in controlled temperature and light conditions. We also studied the allocation pattern of assimilated carbon with 14C pulse labelling experiment. The photosynthetic light responses of the tree species were substantially different. The maximum photosynthetic capacity (P max) was 2.21 μg CO2 s−1 g−1 in Scots pine, 1.22 μg CO2 s−1 g−1 in Norway spruce and 3.01 μg CO2 s−1 g−1 in Silver birch seedlings. According to the pulse labelling experiments, 43–75% of the assimilated carbon remained in the aboveground parts of the seedlings. The amount of carbon allocated to root and rhizosphere respiration was about 9–26%, and the amount of carbon allocated to root and ectomycorrhizal biomass about 13–21% of the total assimilated CO2. The 14CO2 pulse reached the root system within few hours after the labelling and most of the pulse had passed the root system after 48 h. The transport rate of carbon from shoot to roots was fastest in Silver birch seedlings.  相似文献   

18.
Natural 15N abundance measurements of ecosystem nitrogen (N) pools and 15N pool dilution assays of gross N transformation rates were applied to investigate the potential of δ15N signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected from pure spruce (Picea abies (L.) Karst.) and mixed spruce-beech (Fagus sylvatica L.) stands on stagnic gleysol in Austria. Soil δ15N values of both forest sites increased with depth to 50 cm, but then decreased below this zone. δ15N values of microbial biomass (mixed stand: 4.7 ± 0.8‰, spruce stand: 5.9 ± 0.9‰) and of dissolved organic N (DON; mixed stand: 5.3 ± 1.7‰, spruce stand: 2.6 ± 3.3‰) were not significantly different; these pools were most enriched in 15N of all soil N pools. Denitrification represented the main N2O-producing process in the mixed forest stand as we detected a significant 15N enrichment of its substrate NO3 (3.6 ± 4.5‰) compared to NH4+ (−4.6 ± 2.6‰) and its product N2O (−11.8 ± 3.2‰). In a 15N-labelling experiment in the spruce stand, nitrification contributed more to N2O production than denitrification. Moreover, in natural abundance measurements the NH4+ pool was slightly 15N-enriched (−0.4 ± 2.0 ‰) compared to NO3 (−3.0 ± 0.6 ‰) and N2O (−2.1 ± 1.1 ‰) in the spruce stand, indicating nitrification and denitrification operated in parallel to produce N2O. The more positive δ15N values of N2O in the spruce stand than in the mixed stand point to extensive microbial N2O reduction in the spruce stand. Combining natural 15N abundance and 15N tracer experiments provided a more complete picture of soil N dynamics than possible with either measurement done separately.  相似文献   

19.
Restoring soil C pools by reducing land use intensity is a potentially high impact, rapidly deployable strategy for partially offsetting atmospheric CO2 increases. However, rates of C accumulation and underlying mechanisms have rarely been determined for a range of managed and successional ecosystems on the same soil type. We determined soil organic matter (SOM) fractions with the highest potential for sequestering C in ten ecosystems on the same soil series using both density- and incubation-based fractionation methods. Ecosystems included four annual row-crop systems (conventional, low input, organic and no-till), two perennial cropping systems (alfalfa and poplar), and four native ecosystems (early successional, midsuccessional historically tilled, midsuccessional never-tilled, and late successional forest). Enhanced C storage to 5 cm relative to conventional agriculture ranged from 8.9 g C m−2 y−1 in low input row crops to 31.6 g C m−2 y−1 in the early successional ecosystem. Carbon sequestration across all ecosystems occurred in aggregate-associated pools larger than 53 μm. The density-based fractionation scheme identified heavy-fraction C pools (SOM > 1.6 g cm−3 plus SOM < 53 μm), particularly those in macroaggregates (>250 μm), as having the highest potential C accumulation rates, ranging from 8.79 g C m−2 y−1 in low input row crops to 29.22 g C m−2 y−1 in the alfalfa ecosystem. Intra-aggregate light fraction pools accumulated C at slower rates, but generally faster than in inter-aggregate LF pools. Incubation-based methods that fractionated soil into active, slow and passive pools showed that C accumulated primarily in slow and resistant pools. However, crushing aggregates in a manner that simulates tillage resulted in a substantial transfer of C from slow pools with field mean residence times of decades to active pools with mean residence times of only weeks. Our results demonstrate that soil C accumulates almost entirely in soil aggregates, mostly in macroaggregates, following reductions in land use intensity. The potentially rapid destruction of macroaggregates following tillage, however, raises concerns about the long-term persistence of these C pools.  相似文献   

20.
Quantification of the role of fine roots in the biological cycle of nutrients necessitates understanding root distribution, estimating root biomass, turnover rate and nutrient concentrations, and the dynamics of these parameters in perennial systems. Temporal dynamics, vertical distribution, annual production and turnover, and nitrogen use of fine roots (≤2 mm in diameter) were studied in mature (5-year-old) stands of two enset (Ensete ventricosum) clones using the in-growth bag technique. Live fine root mass generally decreased with increasing depth across all seasons except the dry period. Except for the dry period, more than 70% of the fine root mass was in the above 0-20 cm depth, and the fine root mass in the upper 0–10 cm depth was significantly higher than in the lowest depth (20–30 cm). Live fine root mass showed a seasonal peak at the end of the major rainy season but fell to its lowest value during the dry or short rainy season. The difference between the peak and low periods were significant (p ≤ 0.05). Fine root nitrogen (N) use showed significant seasonal variation where the mean monthly fine root N use was highest during the major rainy season. There were significant effects on N use due to depths and in-growth periods, but not due to clones. Enset fine root production and turnover ranged from 2,339 to 2,451 kg ha−1 year−1 and from 1.55 to 1.80 year−1, respectively. Root N return, calculated from fine root turnover, was estimated at 64–65 kg ha−1 year−1. Fine root production, vertical distribution and temporal dynamics may be related to moisture variations and nutrient (N) fluxes among seasons and along the soil depth. The study showed that fine root production and turnover can contribute considerably to the carbon and nitrogen economy of mature enset plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号