首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
The papillomavirus E1 protein is essential for viral DNA replication, and phosphorylation of E1 appears to regulate protein function and DNA replication. Serine 584 of bovine papillomavirus E1 is in a conserved motif resembling a CK2 consensus site, and is phosphorylated by CK2 in vitro. Mutation of serine 584 to alanine eliminates replication of the viral genome in transient replication assays. Wild-type and mutant E1 proteins were expressed from recombinant baculoviruses and used to assess biochemical functions of the amino acid 584 substitution. Helicase enzyme activity, E1 binding to the viral E2 protein and to cellular DNA polymerase alpha-primase were all unaffected in the mutant protein. Binding of E1 to viral replication origin DNA sequences was reduced in the mutant, but not eliminated. The carboxyl-terminal region of the protein appears to play a role in regulating E1 function, and adds to a complex picture emerging for papillomavirus DNA replication control.  相似文献   

2.
The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.  相似文献   

3.
The E1 and E2 proteins from bovine papillomavirus bind cooperatively to binding sites in the viral origin of DNA replication. The DNA-binding domains (DBDs) of the two proteins interact with each other, and the E2 transactivation domain interacts with the helicase domain of E1. Mutations that disrupt the interaction between the two DBDs also disrupt the interaction between the E2 activation domain and the E1 helicase domain, demonstrating interdependence of the two interactions. Cooperative binding of the two DBDs generates a sharp bend in the DNA that is required for interaction between the E2 activation domain and E1. This indicates that interaction between the two DBDs plays an architectural role, 'triggering' a productive interaction between the E2 transactivation domain and E1 through introduction of a sharp bend in the DNA. This two-step mechanism may be a required feature for cooperative DNA binding to proximal binding sites.  相似文献   

4.
5.
Replication of the genome of human papillomaviruses (HPV) is initiated by the recruitment of the viral E1 helicase to the origin of DNA replication by the viral E2 protein, which binds specifically to the origin. We determined, for HPV type 11 (HPV-11), that the C-terminal 296 amino acids of E1 are sufficient for interaction with the transactivation domain of E2 in the yeast two-hybrid system and in vitro. This region of E1 encompasses the ATP-binding domain. Here we have examined the role of this ATP-binding domain, and of ATP, on E2-dependent binding of E1 to the origin. Several amino acid substitutions in the phosphate-binding loop (P loop), which is implicated in binding the triphosphate moiety of ATP, abolished E2 binding, indicating that the structural integrity of this domain is essential for the interaction. The structural constraints imposed on the E1 P loop may differ between HPV-11 and bovine papillomavirus type 1 (BPV-1), since the P479S substitution that inactivates BPV-1 E1 is tolerated in the HPV-11 enzyme. Other substitutions in the E1 P loop, or in two other conserved motifs of the ATP-binding domain, were tolerated, indicating that ATP binding is not essential for interaction with E2. Nevertheless, ATP-Mg stimulated the E2-dependent binding of E1 to the origin in vitro. This stimulation was maximal at the physiological temperature (37 degrees C) and did not require ATP hydrolysis. In contrast, ATP-Mg did not stimulate the E2-dependent binding to the origin of an E1 protein containing only the C-terminal domain (353 to 649) or that of mutant E1 proteins with alterations in the DNA-binding domain. These results are discussed in light of a model in which the E1 ATP-binding domain is required for formation of the E2-binding surface and can, upon the binding of ATP, facilitate and/or stabilize the interaction of E1 with the origin.  相似文献   

6.
Adeno-associated virus (AAV), unique among animal viruses in its ability to integrate into a specific chromosomal location, is a promising vector for human gene therapy. AAV Replication (Rep) protein is essential for viral replication and integration, and its amino terminal domain possesses site-specific DNA binding and endonuclease activities required for replication initiation and integration. This domain displays a novel endonuclease fold and demonstrates an unexpected structural relationship to other viral origin binding proteins such as the papillomavirus E1 protein and the SV40 T antigen. The active site, located at the bottom of a positively charged cleft, is formed by the spatial convergence of a divalent metal ion and two conserved sequence motifs that define the rolling circle replication superfamily.  相似文献   

7.
High risk types of human papillomavirus, such as type 18 (HPV-18), cause cervical carcinoma, one of the most frequent causes of cancer death in women worldwide. DNA replication is one of the central processes in viral maintenance, and the machinery involved is an excellent target for the design of antiviral therapy. The papillomaviral DNA replication initiation protein E1 has origin recognition and ATP-dependent DNA melting and helicase activities, and it consists of a DNA-binding domain and an ATPase/helicase domain. While monomeric in solution, E1 binds DNA as a dimer. Dimerization occurs via an interaction of hydrophobic residues on a single alpha-helix of each monomer. Here we present the crystal structure of the monomeric HPV-18 E1 DNA-binding domain refined to 1.8-A resolution. The structure reveals that the dimerization helix is significantly different from that of bovine papillomavirus type 1 (BPV-1). However, we demonstrate that the analogous residues required for E1 dimerization in BPV-1 and the low risk HPV-11 are also required for HPV-18 E1. We also present evidence that the HPV-18 E1 DNA-binding domain does not share the same nucleotide and amino acid requirements for specific DNA recognition as BPV-1 and HPV-11 E1.  相似文献   

8.
Functional interactions between papillomavirus E1 and E2 proteins.   总被引:4,自引:3,他引:1       下载免费PDF全文
DNA replication of papillomaviruses requires the viral E1 and E2 proteins. These proteins bind cooperatively to the viral origin of replication (ori), which contains binding sites for both proteins, forming an E1-E2-ori complex which is essential for initiation of DNA replication. To map the domains in E2 that are involved in the interaction with E1, we have used chimeric bovine papillomavirus (BPV)/human papillomavirus type 11 (HPV-11) E2 proteins. The results from this study show that both the DNA binding domain and the transactivation domain from BPV E2 independently can interact with BPV E1. However, the roles of these two interactions are different: the interaction between E1 and the activation domain of E2 is necessary and sufficient for cooperativity in binding and for DNA replication; the interaction between E1 and the DNA binding domain of E2 is required only when the binding sites for E1 and E2 are adjacent to each other, and the function of this interaction appears to be to facilitate the interaction between E1 and the transactivation domain of E2. These results indicate that the cooperative binding of E1 and E2 to the BPV ori takes place via a novel two-stage mechanism where one interaction serves as a trigger for the formation of the second, productive, interaction between the two proteins.  相似文献   

9.
10.
In vitro DNA binding results from a series of E1 proteins containing amino-terminal or carboxy-terminal truncations indicated that sequences between amino acids 121 and 284 were critical for origin binding. Additional binding experiments with E1 proteins containing internal, in-frame insertions or deletions confirmed the importance of the region defined by truncated E1 proteins and also demonstrated that downstream sequences were not required for binding activity in the context of the full-length E1 protein. On the basis of mapping results from the E1 mutants, a clone (pE1(121-311)) was constructed that expressed E1 amino acids within the approximate boundaries of the critical sequences for DNA binding. The E1(121-311) protein retained origin-specific DNA binding, confirming that this region was not only necessary but was also sufficient for origin recognition. In addition to origin binding, E1(121-311) bound E2 protein in a cold-sensitive manner. Therefore, DNA binding and E2 binding activities colocalize to a 191-amino-acid functional domain derived from the amino-terminal half of the E1 protein. Finally, three E1 proteins with mutations in this region all lacked DNA binding activity and were all defective for in vivo replication. Two of these E1 mutants retained E2 binding capability, demonstrating that origin recognition by E1 is critical for replication and cannot necessarily be rescued by an interaction with E2 protein.  相似文献   

11.
In addition to viral proteins E1 and E2, bovine papillomavirus type 1 (BPV1) depends heavily on host replication machinery for genome duplication. It was previously shown that E1 binds to and recruits cellular replication proteins to the BPV1 origin of replication, including DNA polymerase alpha-primase, replication protein A (RPA), and more recently, human topoisomerase I (Topo I). Here, we show that Topo I specifically stimulates the origin binding of E1 severalfold but has no effect on nonorigin DNA binding. This is highly specific, as binding to nonorigin DNA is not stimulated, and other cellular proteins that bind E1, such as RPA and polymerase alpha-primase, show no such effect. The stimulation of E1's origin binding by Topo I is not synergistic with the stimulation by E2. Although the enhanced origin binding of E1 by Topo I requires ATP and Mg2+ for optimal efficiency, ATP hydrolysis is not required. Using an enzyme-linked immunosorbent assay, we showed that the interaction between E1 and Topo I is decreased in the presence of DNA. Our results suggest that Topo I participates in the initiation of papillomavirus DNA replication by enhancing E1 binding to the BPV1 origin.  相似文献   

12.
13.
The E1 protein of bovine papillomavirus (BPV) is a site-specific DNA binding protein that recognizes an 18-bp inverted repeat element in the viral origin of replication. Sequence-specific DNA binding function maps to the region from approximately amino acids 140 to 300, and isolated polypeptides containing this region have been shown to retain origin binding in vitro. To investigate the sequence and structural characteristics which contribute to sequence-specific binding, the primary sequence of this region was examined for conserved features. The BPV E1 DNA binding domain (E1DBD) contains three major hydrophilic domains (HR1, amino acids 179-191; HR2, amino acids 218 to 230; and HR3, amino acids 241 to 252), of which only HR1 and HR3 are conserved among papillomavirus E1 proteins. E1DBD proteins with lysine-to-alanine mutations in HR1 and HR3 were severely impaired for DNA binding function in vitro, while a lysine-to-alanine mutation in HR2 had a minimal effect on DNA binding. Mutation of adjacent threonine residues in HR1 (T187 and T188) revealed that these two amino acids made drastically different contributions to DNA binding, with the T187 mutant being severely defective for origin binding whereas the T188 mutant was only mildly affected. Helical wheel projections of HR1 predict that T187 is on the same helical face as the critical lysine residues whereas T188 is on the opposing face, which is consistent with their respective contributions to DNA binding activity. To examine E1 binding in vivo, a yeast one-hybrid system was developed. Both full-length E1 and the E1DBD polypeptide were capable of specifically interacting with the E1 binding site in the context of the yeast genome, and HR1 was also critical for this in vivo interaction. Overall, our results indicate that HR1 is essential for origin binding by E1, and the features and properties of HR1 suggest that it may be part of a recognition sequence that mediates specific E1-nucleotide contacts.  相似文献   

14.
Papillomavirus E1 protein is the replication initiator that recognizes and binds to the viral origin and initiates DNA strand separation through its ATP-dependent helicase activity. The E1 protein also functions in viral DNA replication by recruiting several cellular proteins to the origin, including host DNA polymerase alpha and replication protein A. To identify other cellular proteins that interact with bovine papillomavirus E1, an HeLa cDNA library was screened using a yeast two-hybrid assay. The host cell sumoylating enzyme, Ubc9, was found to interact specifically with E1 both in vitro and in vivo. Mapping studies localized critical E1 sequences for interaction to amino acids 315-459 and strongly implicated leucine 420 as critical for E1.Ubc9 complex formation. In addition to binding E1, Ubc9 catalyzed the covalent linkage of the ubiquitin-like protein, SUMO-1, to E1. An E1 mutant unable to bind Ubc9 showed normal intracellular stability, but was impaired for intranuclear distribution. Failure to accumulate in appropriate nuclear subdomains may account for the previously demonstrated replication defect of a human papillomavirus 16 E1 protein that was also unable to bind Ubc9 and suggests that sumoylation is a functionally important modification with regulatory implications for papillomavirus replication.  相似文献   

15.
The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to demonstrate that human papillomavirus type 11 (HPV11) E1 can self-associate in yeast and form hexamers in vitro in a reaction stimulated by single-stranded DNA. Self-association in yeast was most readily detected using constructs spanning the E1 C-terminal domain (amino acids 353 to 649) and was dependent on a minimal E1-E1 interaction region located between amino acids 353 and 431. The E1 C-terminal domain was also able to oligomerize in vitro but, in contrast to wild-type E1, did so efficiently in the absence of single-stranded DNA. Sequences located between amino acids 191 and 353 were necessary for single-stranded DNA to modulate oligomerization of E1 and were also required, together with the rest of the C terminus, for binding of E1 to the origin. Two regions within the C-terminal domain were identified as important for oligomerization: the ATP-binding domain and region A, which is located within the minimal E1-E1 interaction domain and is one of four regions of E1 that is highly conserved with the large T antigens of simian virus 40 and polyomavirus. Amino acid substitutions of highly conserved residues within the ATP-binding domain and region A were identified that reduced the ability of E1 to oligomerize and bind to the origin in vitro and to support transient DNA replication in vivo. These results support the notion that oligomerization of E1 occurs primarily through the C-terminal domain of the protein and is allosterically regulated by DNA and ATP. The bipartite organization of the E1 C-terminal domain is reminiscent of that found in other hexameric proteins and suggests that these proteins may oligomerize by a similar mechanism.  相似文献   

16.
Initiator proteins are critical components of the DNA replication machinery and mark the site of initiation. This activity probably requires highly selective DNA binding; however, many initiators display modest specificity in vitro. We demonstrate that low specificity of the papillomavirus E1 initiator results from the presence of a non-specific DNA-binding activity, involved in melting, which masks the specificity intrinsic to the E1 DNA-binding domain. The viral factor E2 restores specificity through a physical interaction with E1 that suppresses non-specific binding. We propose that this arrangement, where one DNA-binding activity tethers the initiator to ori while another alters DNA structure, is a characteristic of other viral and cellular initiator proteins. This arrangement would provide an explanation for the low selectivity observed for DNA binding by initiator proteins.  相似文献   

17.
Human papillomavirus (HPV) DNA replication is initiated by recruitment of the E1 helicase by the E2 protein to the viral origin. Screening of our corporate compound collection with an assay measuring the cooperative binding of E1 and E2 to the origin identified a class of small molecule inhibitors of the protein interaction between E1 and E2. Isothermal titration calorimetry and changes in protein fluorescence showed that the inhibitors bind to the transactivation domain of E2, the region that interacts with E1. These compounds inhibit E2 of the low risk HPV types 6 and 11 but not those of high risk HPV types or of cottontail rabbit papillomavirus. Functional evidence that the transactivation domain is the target of inhibition was obtained by swapping this domain between a sensitive (HPV11) and a resistant (cottontail rabbit papillomavirus) E2 type and by identifying an amino acid substitution, E100A, that increases inhibition by approximately 10-fold. This class of inhibitors was found to antagonize specifically the E1-E2 interaction in vivo and to inhibit HPV DNA replication in transiently transfected cells. These results highlight the potential of the E1-E2 interaction as a small molecule antiviral target.  相似文献   

18.
Cellular factors required for papillomavirus DNA replication.   总被引:8,自引:5,他引:3       下载免费PDF全文
T Melendy  J Sedman    A Stenlund 《Journal of virology》1995,69(12):7857-7867
In vitro replication of papillomavirus DNA has been carried out with a combination of purified proteins and partially purified extracts made from human cells. DNA synthesis requires the viral E1 protein and the papillomavirus origin of replication. The E2 protein stimulates DNA synthesis in a binding site-independent manner. Papillomavirus DNA replication is also dependent on the cellular factors replication protein A, replication factor C, and proliferating-cell nuclear antigen as well as a phosphocellulose column fraction (IIA). Fraction IIA contains DNA polymerase alpha-primase and DNA polymerase delta. Both of these polymerases are essential for papillomavirus DNA replication in vitro. However, unlike the case with T-antigen-dependent replication from the simian virus 40 origin, purified DNA polymerase alpha-primase and delta cannot efficiently replace fraction IIA in the replication reaction. Hence, additional cellular factors seem to be required for papillomavirus DNA replication. Interestingly, replication factor C and proliferating-cell nuclear antigen are more stringently required for DNA synthesis in the papillomavirus system than in the simian virus 40 in vitro system. These distinctions indicate that there must be mechanistic differences between the DNA replication systems of papillomavirus and simian virus 40.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号