首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
RNA interference (RNAi) elicited by long double‐stranded (ds) or base‐paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence‐specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN‐responsive cells with type I IFN. Notably, transfection with long dsRNA specifically vaccinates IFN‐deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system.  相似文献   

3.
4.
5.
环状RNA(circular RNA,circRNA)是一种具有新型环状结构的RNA分子,广泛存在于多种生物体中,具有结构稳定、进化保守、高度丰富和组织特异性等特征。同时,它可通过充当微小RNA(microRNA,miRNA)分子海绵、调控基因转录、结合蛋白质和参与蛋白质翻译等方式发挥生物学功能。且随着高通量测序技术和生物信息学的迅速发展,越来越多的circRNA被发现与肿瘤的发生有关。N6-甲基腺嘌呤(N6-methyladenosine,m6A)修饰是真核生物最常见的一种RNA修饰,它是由m6A甲基转移酶、去甲基化酶和m6A识别蛋白质共同参与的动态可逆的调节过程,广泛参与RNA的核输出、剪接、稳定性、翻译和降解等过程的调控。m6A修饰在多种人类疾病中发挥关键作用,例如癌症和心血管疾病等。近年来,在一些circRNA中也发现了m6A修饰,并报道了其在宫颈癌、结直肠癌、肝细胞癌、非小细胞肺癌和胃低分化腺癌等多种恶性肿瘤发生发展中的作用。本文总结了RNA m6A修饰机制、m6A修饰对circRNA的调控作用,以及circRNA的m6A修饰在肿瘤中的作用,也讨论了m6A修饰的circRNA的潜在临床应用价值,以期为肿瘤的早期诊断、临床治疗和预后判断提供新的思路与途径。  相似文献   

6.
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3–binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.  相似文献   

7.
Like protein and DNA, different types of RNA molecules undergo various modifications. Accumulating evidence suggests that these RNA modifications serve as sophisticated codes to mediate RNA behaviors and many important biological functions. N6-methyladenosine (m6A) is the most abundant internal RNA modification found in a variety of eukaryotic RNAs, including but not limited to mRNAs, tRNAs, rRNAs, and long non-coding RNAs (lncRNAs). In mammalian cells, m6A can be incorporated by a methyltransferase complex and removed by demethylases, which ensures that the m6A modification is reversible and dynamic. Moreover, m6A is recognized by the YT521-B homology (YTH) domain-containing proteins, which subsequently direct different complexes to regulate RNA signaling pathways, such as RNA metabolism, RNA splicing, RNA folding, and protein translation. Herein, we summarize the recent progresses made in understanding the molecular mechanisms underlying the m6A recognition by YTH domain-containing proteins, which would shed new light on m6A-specific recognition and provide clues to the future identification of reader proteins of many other RNA modifications.  相似文献   

8.
The role of epigenetic regulation in immunity is emerging, especially for RNA N6-methyladenosine (m6A) modification. However, little is known about the role of m6A in the regulation of the immune microenvironment of periodontitis. Thus, we aim to investigate the impact of m6A modification in periodontitis immune microenvironment. The RNA modification patterns mediated by 23 m6A-regulators were systematically evaluated in 310 periodontitis samples. The impact of m6A modification on immune microenvironment characteristics was explored, including infiltrating immunocytes, immune reaction gene-sets and HLAs (human leukocyte antigen) gene. m6A phenotype-related immune genes were also identified. 17 m6A regulators were dysregulated and a 15-m6A regulator signature can well distinguish periodontitis and control samples. ALKBH5 and FMR1 are closely related to infiltrating monocyte abundance. ELAVL1 and CBLL1 are significant regulators in immune reaction of TNF_Family_Members_Receptors and Cytokine. The expression of HLA-B and HLA-DOA is affected by ALKBH5 and LRPPRC. 3 distinct RNA modification patterns mediated by 23 m6A regulators were identified. They differ from immunocyte abundance, immune reaction and HLA gene. 1631 m6A phenotype-related genes and 70 m6A-mediated immune genes were identified, and the biological functions of these were explored. Our finding demonstrated the m6A modification plays a crucial role in the diversity and complexity of the immune microenvironment of periodontitis.  相似文献   

9.
10.
《Cell》2021,184(25):6037-6051.e14
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG‐I‐like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon‐stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG‐I, MDA5 and, the least‐studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus‐derived double‐stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi‐dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA‐mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2‐mediated antagonism of dsRNA‐mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.  相似文献   

13.
N6 -methyl-adenosine (m6A) is one of the most common and abundant modifications on RNA molecules present in eukaryotes. However, the biological significance of m6A methylation remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation of m6A may have a profound impact on gene expression regulation. The m6A modification is catalyzed by an unidentified methyltransferase complex containing at least one subunit methyltransferase like 3 (METTL3). m6A modification on messenger RNAs (mRNAs) mainly occurs in the exonic regions and 3’-untranslated region (3’-UTR) as revealed by high-throughput m6A-seq. One significant advance in m6A research is the recent discovery of the first two m6A RNA demethylases fat mass and obesity-associated (FTO) gene and ALKBH5, which catalyze m6A demethylation in an a-ketoglutarate (a-KG)-and Fe2+-dependent manner. Recent studies in model organisms demonstrate that METTL3, FTO and ALKBH5 play important roles in many biological processes, ranging from development and metabolism to fertility. Moreover, perturbation of activities of these enzymes leads to the disturbed expression of thousands of genes at the cellular level, implicating a regulatory role of m6A in RNA metabolism. Given the vital roles of DNA and histone methylations in epigenetic regulation of basic life processes in mammals, the dynamic and reversible chemical m6A modification on RNA may also serve as a novel epigenetic marker of profound biological significances.  相似文献   

14.
《Molecular cell》2021,81(16):3356-3367.e6
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

15.
There is now solid evidence that cell-to-cell trafficking of certain proteins and RNAs plays a critical role in trans-cellular regulation of gene expression to coordinate cellular differentiation and development. Such trafficking also is critical for viral infection and plant defense. The mechanisms of trafficking remain poorly understood. Although some proteins may move between cells by diffusion, many proteins and RNAs move in a highly regulated fashion. Regulation is likely achieved through interactions between distinct protein or RNA motifs and cellular factors. Some motifs and factors have been identified. One of the major focuses for future studies is to identify all motifs and their cognate factors and further elucidate their roles in trafficking between specific cells. With increasing information from such studies, we should be able to develop an understanding of the mechanisms that regulate trafficking of various proteins and RNAs across all and specific cellular boundaries. On the basis of such mechanistic knowledge, we can further investigate how the trafficking machinery has evolved to regulate developmental and physiological processes in a plant, how pathogens have co-evolved to use this machinery for systemic spread in a plant, and how plants use this machinery for counterdefense.  相似文献   

16.
N6-methyladenosine (m6A) is the most frequent chemical modification in eukaryotic mRNA and is known to participate in a variety of physiological processes, including cancer progression and viral infection. The reversible and dynamic m6A modification is installed by m6A methyltransferase (writer) enzymes and erased by m6A demethylase (eraser) enzymes. m6A modification recognized by m6A binding proteins (readers) regulates RNA processing and metabolism, leading to downstream biological effects such as promotion of stability and translation or increased degradation. The m6A writers and erasers determine the abundance of m6A modifications and play decisive roles in its distribution and function. In this review, we focused on m6A writers and erasers and present an overview on their known functions and enzymatic molecular mechanisms, showing how they recognize substrates and install or remove m6A modifications. We also summarize the current applications of m6A writers and erasers for m6A detection and highlight the merits and drawbacks of these available methods. Lastly, we describe the biological functions of m6A in cancers and viral infection based on research of m6A writers and erasers and introduce new assays for m6A functionality via programmable m6A editing tools.  相似文献   

17.
18.
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non‐coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6A is the most common. The function of m6A modifications is mainly regulated by 3 types of proteins: m6A methyltransferases (writers), m6A demethylases (erasers) and m6A‐binding proteins (readers). In this review, we focus on RNA m6A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.  相似文献   

19.
《Molecular cell》2023,83(2):237-251.e7
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号