首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens.  相似文献   

2.
3.
Bacterial wilt, a disease impacting cultivated crops worldwide, is caused by the pathogenic bacterium Ralstonia solanacearum. PopP2 (for Pseudomonas outer protein P2) is an R. solanacearum type III effector that belongs to the YopJ/AvrRxv protein family and interacts with the Arabidopsis thaliana RESISTANT TO RALSTONIA SOLANACEARUM 1-R (RRS1-R) resistance protein. RRS1-R contains the Toll/Interleukin1 receptor–nucleotide binding site–Leu-rich repeat domains found in several cytoplasmic R proteins and a C-terminal WRKY DNA binding domain. In this study, we identified the Arabidopsis Cys protease RESPONSIVE TO DEHYDRATION19 (RD19) as being a PopP2-interacting protein whose expression is induced during infection by R. solanacearum. An Arabidopsis rd19 mutant in an RRS1-R genetic background is compromised in resistance to the bacterium, indicating that RD19 is required for RRS1-R–mediated resistance. RD19 normally localizes in mobile vacuole-associated compartments and, upon coexpression with PopP2, is specifically relocalized to the plant nucleus, where the two proteins physically interact. No direct physical interaction between RRS1-R and RD19 in the presence of PopP2 was detected in the nucleus as determined by Förster resonance energy transfer. We propose that RD19 associates with PopP2 to form a nuclear complex that is required for activation of the RRS1-R–mediated resistance response.  相似文献   

4.
In this study we characterized the sensitive to low humidity 1 (slh1) mutant of Arabidopsis ecotype No-0 which exhibits normal growth on agar plate medium but which on transfer to soil shows growth arrest and development of necrotic lesions. cDNA microarray hybridization and RNA gel blot analysis revealed that genes associated with activation of disease resistance were upregulated in the slh1 mutants in response to conditions of low humidity. Furthermore, the slh1 mutants accumulate callose, autofluorescent compounds and salicylic acid (SA). We demonstrate that SA is required for the slh1 phenotype but not PAD4 or NPR1. SLH1 was isolated by map-based cloning and it encodes a resistance (R)-like protein consisting of a domain with Toll and interleukin-1 receptor homology (TIR), a nucleotide-binding domain (NB), leucine-rich repeats (LRR) and a carboxy-terminal WRKY domain. SLH1 is identical to the R gene RRS1-R of the Arabidopsis ecotype Nd-1, a gene which confers resistance to the bacterial pathogen Ralstonia solanacearum GMI1000 and also functions as an R gene to this pathogen in No-0. We identified a 3 bp insertion mutation in slh1 that results in the addition of a single amino acid in the WRKY domain; thereby impairing its DNA-binding activity. Our data suggest that SLH1 disease resistance signaling may be negatively regulated by its WRKY domain in the R protein and that the constitutive defense activation conferred by the slh1 mutation is inhibited by conditions of high humidity.  相似文献   

5.
The potato (Solanum tuberosum) disease resistance protein Rx has a modular arrangement that contains coiled-coil (CC), nucleotide-binding (NB), and leucine-rich repeat (LRR) domains and mediates resistance to potato virus X. The Rx N-terminal CC domain undergoes an intramolecular interaction with the Rx NB-LRR region and an intermolecular interaction with the Rx cofactor RanGAP2 (Ran GTPase-activating protein 2). Here, we report the crystal structure of the Rx CC domain in complex with the Trp-Pro-Pro (WPP) domain of RanGAP2. The structure reveals that the Rx CC domain forms a heterodimer with RanGAP2, in striking contrast to the homodimeric structure of the CC domain of the barley disease resistance protein MLA10. Structure-based mutagenesis identified residues from both the Rx CC domain and the RanGAP2 WPP domain that are crucial for their interaction and function in vitro and in vivo. Our results reveal the molecular mechanism underlying the interaction of Rx with RanGAP2 and identify the distinct surfaces of the Rx CC domain that are involved in intramolecular and intermolecular interactions.  相似文献   

6.
Na+-dependent chloride cotransporters (NKCC1, NKCC2, and NCC) are activated by phosphorylation to play critical roles in diverse physiological responses, including renal salt balance, hearing, epithelial fluid secretion, and volume regulation. Serine threonine kinase WNK4 (With No K = lysine member 4) and members of the Ste20 kinase family, namely SPAK and OSR1 (Ste20-related proline/alanine-rich kinase, Oxidative stress-responsive kinase) govern phosphorylation. According to present understanding, WNK4 phosphorylates key residues within SPAK/OSR1 leading to kinase activation, allowing SPAK/OSR1 to bind to and phosphorylate NKCC1, NKCC2, and NCC. Recently, the calcium-binding protein 39 (Cab39) has emerged as a binding partner and enhancer of SPAK/OSR1 activity, facilitating kinase autoactivation and promoting phosphorylation of the cotransporters. In the present study, we provide evidence showing that Cab39 differentially interacts with WNK4 and SPAK/OSR1 to switch the classic two kinase cascade into a signal kinase transduction mechanism. We found that WNK4 in association with Cab39 activates NKCC1 in a SPAK/OSR1-independent manner. We discovered that WNK4 possesses a domain that bears close resemblance to the SPAK/OSR1 C-terminal CCT/PF2 domain, which is required for physical interaction between the Ste20 kinases and the Na+-driven chloride cotransporters. Modeling, yeast two-hybrid, and functional data reveal that this PF2-like domain located downstream of the catalytic domain in WNK4 promotes the direct interaction between the kinase and NKCC1. We conclude that in addition to SPAK and OSR1, WNK4 is able to anchor itself to the N-terminal domain of NKCC1 and to promote cotransporter activation.  相似文献   

7.
8.
WNK4 (with-no-lysine (K) kinase-4) is present in the distal nephron of the kidney and plays an important role in the regulation of renal ion transport. The epithelial Ca2+ channel TRPV5 (transient receptor potential vanilloid 5) is the gatekeeper of transcellular Ca2+ reabsorption in the distal nephron. Previously, we reported that activation of protein kinase C (PKC) increases cell-surface abundance of TRPV5 by inhibiting caveola-mediated endocytosis of the channel. Here, we report that WNK4 decreases cell-surface abundance of TRPV5 by enhancing its endocytosis. Deletion analysis revealed that stimulation of endocytosis of TRPV5 involves amino acids outside the kinase domain of WNK4. We also investigated interplay between WNK4 and PKC regulation of TRPV5. The maximal level of TRPV5 current density stimulated by the PKC activator 1-oleoyl-acetyl-sn-glycerol (OAG) is the same with or without WNK4. The relative increase of TRPV5 current stimulated by OAG, however, is greater in the presence of WNK4 compared with that without WNK4 (∼215% increase versus 60% increase above the level without OAG). Moreover, the rate of increase of TRPV5 by OAG is faster with WNK4 than without WNK4. The enhanced increase of TRPV5 in the presence of WNK4 is also observed when PKC is activated by parathyroid hormones. Thus, WNK4 exerts tonic inhibition of TRPV5 by stimulating caveola-mediated endocytosis. The lower basal TRPV5 level in the presence of WNK4 allows amplification of the stimulation of channel by PKC. This interaction between WNK4 and PKC regulation of TRPV5 may be important for physiological regulation of renal Ca2+ reabsorption by parathyroid hormones or the tissue kallikrein in vivo.  相似文献   

9.
10.
Calcium (Ca2+) is a key second messenger in eukaryotes and regulates diverse cellular processes, most notably via calmodulin (CaM). In Arabidopsis thaliana, IQD1 (IQ67 domain 1) is the founding member of the IQD family of putative CaM targets. The 33 predicted IQD proteins share a conserved domain of 67 amino acids that is characterized by a unique arrangement of multiple CaM recruitment motifs, including so-called IQ motifs. Whereas IQD1 has been implicated in the regulation of defense metabolism, the biochemical functions of IQD proteins remain to be elucidated. In this study we show that IQD1 binds to multiple Arabidopsis CaM and CaM-like (CML) proteins in vitro and in yeast two-hybrid interaction assays. CaM overlay assays revealed moderate affinity of IQD1 to CaM2 (Kd ∼ 0.6 μm). Deletion mapping of IQD1 demonstrated the importance of the IQ67 domain for CaM2 binding in vitro, which is corroborated by interaction of the shortest IQD member, IQD20, with Arabidopsis CaM/CMLs in yeast. A genetic screen of a cDNA library identified Arabidopsis kinesin light chain-related protein-1 (KLCR1) as an IQD1 interactor. The subcellular localization of GFP-tagged IQD1 proteins to microtubules and the cell nucleus in transiently and stably transformed plant tissues (tobacco leaves and Arabidopsis seedlings) suggests direct interaction of IQD1 and KLCR1 in planta that is supported by GFP∼IQD1-dependent recruitment of RFP∼KLCR1 and RFP∼CaM2 to microtubules. Collectively, the prospect arises that IQD1 and related proteins provide Ca2+/CaM-regulated scaffolds for facilitating cellular transport of specific cargo along microtubular tracks via kinesin motor proteins.  相似文献   

11.
BACE1 (β-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of β-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1–3 (Golgi-localized γ-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and β-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.  相似文献   

12.
13.
During growth in the environment, bacteria encounter stresses which can delay or inhibit their growth. To defend against these stresses, bacteria induce both resistance and repair mechanisms. Many bacteria regulate these resistance mechanisms using a group of alternative σ factors called extracytoplasmic function (ECF) σ factors. ECF σ factors represent the largest and most diverse family of σ factors. Here, we demonstrate that the activation of a member of the ECF30 subfamily of ECF σ factors, σV in Bacillus subtilis, is controlled by the proteolytic destruction of the anti-σ factor RsiV. We will demonstrate that the degradation of RsiV and, thus, the activation of σV requires multiple proteolytic steps. Upon exposure to the inducer lysozyme, the extracellular domain of RsiV is removed by an unknown protease, which cleaves at site 1. This cleavage is independent of PrsW, the B. subtilis site 1 protease, which cleaves the anti-σ factor RsiW. Following cleavage by the unknown protease, the N-terminal portion of RsiV requires further processing, which requires the site 2 intramembrane protease RasP. Our data indicate that the N-terminal portion of RsiV from amino acid 1 to 60, which lacks the extracellular domain, is constitutively degraded unless RasP is absent, indicating that RasP cleavage is constitutive. This suggests that the regulatory step in RsiV degradation and, thus, σV activation are controlled at the level of the site 1 cleavage. Finally, we provide evidence that increased resistance to lysozyme decreases σV activation. Collectively, these data provide evidence that the mechanism for σV activation in B. subtilis is controlled by regulated intramembrane proteolysis (RIP) and requires the site 2 protease RasP.  相似文献   

14.
In the budding yeast Saccharomyces cerevisiae, osmostress activates the Hog1 mitogen-activated protein kinase (MAPK), which regulates diverse osmoadaptive responses. Hkr1 is a large, highly glycosylated, single-path transmembrane protein that is a putative osmosensor in one of the Hog1 upstream pathways termed the HKR1 subbranch. The extracellular region of Hkr1 contains both a positive and a negative regulatory domain. However, the function of the cytoplasmic domain of Hkr1 (Hkr1-cyto) is unknown. Here, using a mass spectrometric method, we identified a protein, termed Ahk1 (Associated with Hkr1), that binds to Hkr1-cyto. Deletion of the AHK1 gene (in the absence of other Hog1 upstream branches) only partially inhibited osmostress-induced Hog1 activation. In contrast, Hog1 could not be activated by constitutively active mutants of the Hog1 pathway signaling molecules Opy2 or Ste50 in ahk1Δ cells, whereas robust Hog1 activation occurred in AHK1+ cells. In addition to Hkr1-cyto binding, Ahk1 also bound to other signaling molecules in the HKR1 subbranch, including Sho1, Ste11, and Pbs2. Although osmotic stimulation of Hkr1 does not activate the Kss1 MAPK, deletion of AHK1 allowed Hkr1 to activate Kss1 by cross talk. Thus, Ahk1 is a scaffold protein in the HKR1 subbranch and prevents incorrect signal flow from Hkr1 to Kss1.  相似文献   

15.
Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.  相似文献   

16.
The Arabidopsis RPS4 gene belongs to the Toll/interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) class of plant resistance (R) genes. It confers resistance to Pseudomonas syringae carrying the avirulence gene avrRps4. Transient expression of genomic RPS4 driven by the 35S promoter in tobacco leaves induces an AvrRps4-independent hypersensitive response (HR). The same phenotype is seen after expression of a full-length RPS4 cDNA. This indicates that alternative splicing of RPS4 is not involved in this HR. The extent of HR is correlated with RPS4 protein levels. Deletion analyses of RPS4 domains show the TIR domain is required for the HR phenotype. Mutations in the P-loop motif of the NB domain abolish the HR. Using virus-induced gene silencing, we found that the cell death resulting from RPS4 expression is dependent on the three plant signalling components EDS1, SGT1 and HSP90. All these data suggest that heterologous expression of an R gene can result in activation of cell death even in the absence of its cognate avirulence product, and provides a system for studying the RPS4 domains required for HR.  相似文献   

17.
18.
19.
Colletotrichum higginsianum causes typical anthracnose lesions on the leaves, petioles, and stems of cruciferous plants. Inoculation of Arabidopsis thaliana ecotype Columbia leaves with C. higginsianum results in fungal growth and disease symptoms reminiscent of those induced in other cruciferous plants. We performed map-based cloning and natural variation analysis of 19 A. thaliana ecotypes to identify a dominant resistance locus against C. higginsianum. We found that the A. thaliana RCH2 (for recognition of C. higginsianum) locus encodes two NB-LRR proteins, both of which are required for resistance to C. higginsianum in the A. thaliana ecotype Ws-0. Both proteins are well-characterized R proteins involved in resistance against bacterial pathogens; RRS1 (resistance to Ralstonia solanacearum 1) confers resistance to strain Rs1000 of R. solanacearum and RPS4 to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). Furthermore, we found that both RRS1-Ws and RPS4-Ws genes are required for resistance to Pst-avrRps4 and to Rs1002 R. solanacearum. We therefore demonstrate that a pair of neighboring genes, RRS1-Ws and RPS4-Ws, function cooperatively as a dual R-gene system against at least three distinct pathogens.Key words: R gene, RPS4, RRS1, Colletotrichum higginsianum, Pseudomonas syringae, Ralstonia solanacearumPlants are exposed to various types of potentially invasive organisms, including viruses, bacteria, fungi, nematodes and protozoa, but are able to defend themselves by activating multiple defense mechanisms. The gene-for-gene hypothesis1 provides a mechanism for specific recognition of the pathogen by the plant. This recognition is mediated by direct or indirect interactions between the product of a plant resistance (R) gene and the corresponding effectors encoded by avirulence genes in the pathogen.2 Most R-genes encode non-membrane proteins that contain a conserved nucleotide-binding (NB) site and a carboxy-terminal leucine-rich repeat (LRR) domain.The A. thaliana genome contains about 150 genes coding for NB-LRR-containing proteins.3 This is far less than the number of genes that would be required to respond individually and specifically to all of its potential pathogens. However, plants may have been able to limit the number of required NB-LRR-encoding genes if host proteins perceive sets of distinct pathogens.4Colletotrichum species cause devastating anthracnose diseases in a large number of agronomically important crops. These diseases can often be controlled by introduction of genetic resistance traits, but the molecular components of resistance remain unknown. Inoculation of A. thaliana ecotype Columbia (Col-0) leaves with Colletotrichum higginsianum results in fungal growth and disease symptoms reminiscent of those induced in other cruciferous plants.5,6 Inoculation of a large number of ecotypes with isolates of C. higginsianum showed that A. thaliana has at least two dominant resistance gene loci, designated RCH1 and RCH2 (for recognition of C. higginsianum), indicating that A. thaliana resistance to C. higginsianum is controlled by a “gene-for-gene” interaction.5 In a previous study, we identified a single putative R locus, RCH1 on the top of chromosome 4, in the C. higginsianum-resistant A. thaliana ecotype Eil-0.5In the present study, the locus named RCH2 maps in an extensive cluster of disease-resistance loci known as MRC-J in the A. thaliana ecotype Ws-0. By analyzing natural variations within the MRC-J region, we found that alleles of RRS1 (resistance to Ralstonia solanacearum 1) from susceptible ecotypes contain single nucleotide polymorphisms that may affect the encoded protein. Consistent with this finding, two susceptible mutants, rrs1-1 and rrs1–2, were identified by screening a T-DNA-tagged mutant library for the loss of resistance to C. higginsianum. The screening identified an additional susceptible mutant (rps4-21), which has a 5-bp deletion in the neighboring gene, RPS4-Ws, a well-characterized R gene that provides resistance to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). To assess if RRS1-Ws and RPS4-Ws function in concert, we generated an rps4-21/rrs1-1 double mutant by crossing rps4-21 and rrs1-1 mutants. The susceptibility levels of rps4-21/rrs1-1 double mutant to C. higginsianum were similar to that exhibited by the single mutants, suggesting that RRS1-Ws and RPS-4-Ws function cooperatively. We also found that both RRS1 and RPS4 are required for resistance to R. solanacearum and Pst-avrRps4. Thus, these two adjacent R genes confer resistance, in tandem or individually, to three distinct pathogens with very different infection strategies and virulence mechanisms (Fig. 1).Open in a separate windowFigure 1RPS4 and RRS1 function as a dual resistance gene system that prevents infection by three distinct pathogens (Colletotrichum higginsianum, Ralstonia solanacearum and Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4).Several examples of two NB-LRR genes acting cooperatively to confer resistance against a pathogen have been reported. For example, A. thaliana RPP2A and RPP2B reside adjacently in the RPP2 locus.7 Blast resistance in Pikm-containing rice is conferred by a combination of two NB-LRR encoding genes, Pikm1-TS and Pikm2-TS.8 Pi5-mediated resistance against rice blast requires two NB-LRR-encoding genes.9 It is not known whether these NB-LRR genes function cooperatively or independently. Because of structural similarity with RRS1/RPS4 genes, it is possible that resistance to the pathogens is conferred by cooperation between the two NB-LRR genes.Several reports have shown that a single R gene/locus can confer resistance to multiple pathogens. For instance, tomato Mi mediates resistance against three distinct types of pests, including root-knot nematodes, potato aphids and sweet potato whitefly.10 In the present study, we suggest that two distinct R-genes located in a conserved head-to-head organization confer resistance to three distinct pathogen species by acting cooperatively.The tandem function of RRS1-Ws and its neighboring gene RPS4-Ws is also supported by the evolutionary conservation of the gene pair. Close homologs of RPS4 are often physically paired with homologs of RRS1 in a head-to-head (inverted) tandem arrangement.11 The evolutionary conservation of homologous gene pairs in a head-to-head arrangement also supports the idea that cooperative function of two R genes could be a common mechanism of defense against pathogens. Since the two open reading frames are only 264 bp apart, the promoter regions of the gene pairs possibly overlap, leading to co-regulation of the genes. The head-to-head configuration may assure balanced levels of the protein pair to meet a strict stoichiometric requirement to act together, possibly in a complex. As a practical application, this finding may provide a new strategy for creating transgenic plants that express R genes from other plants. Introduction of two R genes in a head-to-head orientation may be necessary for effective pathogen resistance.  相似文献   

20.
Coenzyme B12 is used by two highly similar radical enzymes, which catalyze carbon skeleton rearrangements, methylmalonyl-CoA mutase and isobutyryl-CoA mutase (ICM). ICM catalyzes the reversible interconversion of isobutyryl-CoA and n-butyryl-CoA and exists as a heterotetramer. In this study, we have identified >70 bacterial proteins, which represent fusions between the subunits of ICM and a P-loop GTPase and are currently misannotated as methylmalonyl-CoA mutases. We designate this fusion protein as IcmF (isobutyryl-CoA mutase fused). All IcmFs are composed of the following three domains: the N-terminal 5′-deoxyadenosylcobalamin binding region that is homologous to the small subunit of ICM (IcmB), a middle P-loop GTPase domain, and a C-terminal part that is homologous to the large subunit of ICM (IcmA). The P-loop GTPase domain has very high sequence similarity to the Methylobacterium extorquens MeaB, which is a chaperone for methylmalonyl-CoA mutase. We have demonstrated that IcmF is an active ICM by cloning, expressing, and purifying the IcmFs from Geobacillus kaustophilus, Nocardia farcinica, and Burkholderia xenovorans. This finding expands the known distribution of ICM activity well beyond the genus Streptomyces, where it is involved in polyketides biosynthesis, and suggests a role for this enzyme in novel bacterial pathways for amino acid degradation, myxalamid biosynthesis, and acetyl-CoA assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号