首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.  相似文献   

2.
Fungus gnat adults transported Fusarium oxysporum f.sp. radicis-lycopersici from Petri dish culture and infected host plants to the roots and hypocotyls of healthy tomato and bean plants. The source of the fungus did not affect the ability of fungus gnats to transport the fungus to healthy hosts. The presence of fungus gnat larvae in media in which young tomato plants were grown did not increase the incidence of plant infection by the pathogen. Fungus gnat adults appear to aid in the dissemination of F. oxysporum f.sp. radicis-lycopersici.  相似文献   

3.
Fusarium oxysporum f. sp. conglutinans (FOC) causes Fusarium wilt, a disease of cabbage that has brought about significant economic loss throughout northern China since it was first detected in 2001. To characterize the Chinese FOC isolates, we compared the cultural characteristics, pathogenicity and races between the Chinese isolates and the type strains (race 1: 52,557 and race 2: 58,385). The Chinese FGL‐03‐6 isolate had cultural characteristics similar to those of strain 52,557, including colony growth rate, colony and spore characteristics and responses to temperature changes, while the strain 58,385 grew faster, produced more pigment and spores and was more adaptable to temperature fluctuations. The lethal temperature for all strains was 60°C, and the optimal temperatures for pathogen growth on potato dextrose agar and pathogenicity on plants were 25°C and 25 to 30°C, respectively. Tests for race and pathogenicity indicated that different cabbage cultivars had similar resistance reactions to FGL‐03‐6 and 52,557. However, the pathogenicity of FGL‐03‐6 was similar to that of 58,385, which infected quickly and caused more severe disease symptoms. This study further provides information regarding characterizing different strains of F. oxysporum f. sp. conglutinans.  相似文献   

4.
Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis synergistically affected the mortality and plant growth of Ranger alfalfa, a cultivar susceptible to stem nematode and Fusarium wilt. The nematode-fungus relationship had an additive effect on mortality and plant growth of Lahontan (nematode resistant and Fusarium wilt susceptible) and of Moapa 69 (nematode susceptible and Fusarium wilt resistant). Mortality rates were 13, 16, 46, and 49% for Ranger; 4, 18, 26, and 28% for Lahontan; and 19, 10, 32, and 30% for Moapa 69 inoculated with D. dipsaci, F. oxysporum f. sp. medicaginis, and simultaneously and sequentially with D. dipsaci and F. oxysporum f. sp. medicaginis, respectively. Shoot weights as a percentage of uninoculated controls for the same treatments were 52, 84, 26, and 28%, for Ranger; 74, 86, 64, and 64% for Lahontan; and 50, 95, 44, and 39% for Moapa 69. Plant growth suppression was related to vascular bundle infection and discoloration of alfalfa root tissue. Disease severity and plant growth of alfalfa did not differ with simultaneous or sequential inoculations of the two pathogens. Fusarium oxysporum f. sp. medicaginis affected alfalfa growth but not nematode reproduction.  相似文献   

5.
Combined infection of cowpea seedlings (c. v. ‘California Blackeye”) by cowpea mosaic virus (CPMV) and Fusarium oxysporum induced greater losses in leaf area, fresh and dry weights than infection by either pathogen alone. The growth of seedlings infected by F. oxysporum f. sp. tracheiphilum was less than that of comparable seedlings infected by F. oxysporum f. sp. phaseoli. The virus infectivity of extracts of the trifoliate leaves of dual-infected plants was significantly higher than that of comparable extracts from the leaves of plants singly infected with CPMV. The nature of the effects of multiple infection in cowpea is discussed.  相似文献   

6.
Leaf yellowing and brown discoloration was observed in tobacco plants cv. Burley TN97 in tobacco fields of central Greece in 2002. Fusarium oxysporum f. sp. nicotianae was isolated from symptomatic plants and Koch's postulates were fulfilled. The pathogenicity of the isolated fungus was examined on five tobacco cultivars (Burley TN97, BurleyB21, VirginiaBE9, Virginia Niki and Anatolika KE26/2). The pathogen was present in tobacco seed batches imported in 2000 and 2001, which indicates that the infected seed is most probably the primary source of the disease in Greece. As Fusarium oxysporum f. sp. vasinfectum can also cause vascular wilt in tobacco, the hypothesis that the isolated F. oxysporum strain belongs to f. sp. vasinfectum was excluded by a pathogenicity test to cotton cv. Acala SJ‐2. This is the first report of F. oxysporum f. sp. nicotianae in Greece and the second in the European Union, although the seedborne nature of the pathogen has not been previously reported in Europe.  相似文献   

7.
An antagonistic bacterium, denoted as strain Z01, was isolated from suppressive soils and identified using fatty acid profile analysis and molecular tools. Its efficacy to control Fusarium oxysporum f. sp. conglutinans on rockets (cv. Eruca sativa) was investigated in the presence of the pathogen, and its effects on the growth and pigment contents of rockets, including the plant biomass and chlorophyll and carotenoid contents, were evaluated in the absence of the pathogen. Z01 was identified as Pantoea agglomerans (GenBank accession number is JX257179). Rockets were grown under greenhouse conditions for 21 days at 25 °C and 95 % relative humidity. When the antagonist suspension was applied at 108, 107 and 106 cells/ml by root-dipping for 20 min before transplanting, the disease incidence was 23.5 %, 28.5 % and 60.0 %, respectively. The disease incidence of rockets treated with carbendazim was 22.5 %, and in the inoculated control, the disease incidence was 82.0 %. In the absence of the pathogen, compared with the average plant biomass (10.7 g/4 plants) of the uninoculated control, application of the antagonist at 108 or 107 cells/ml significantly increased the biomass of the rockets by 40.9 % and 39.1 %, respectively, suggesting that Z01 had an additional ability to promote plant growth beyond its role in Fusarium wilt control. This study indicated that P. agglomerans Z01 has a potential to control Fusarium wilt in rockets. This report is the first to describe the application of P. agglomerans to control Fusarium wilt.  相似文献   

8.
Defence reactions of palm trees to Fusarium oxysporum f. sp. elaeidis (Schlecht) Toovey Cross protection and stimulation of inhibitory substances In palm tree genetic characters of tolerance to Fusarium oxysporum f. sp. elaeidis are correlated with synthesis of fungal inhibitors in infected tissues. Individual variation of synthesis level is also observed among plants of a same line. Defence reactions are triggered by pre-inoculation of an avirulent strain of Fusarium oxysporum. Similar results are obtained by application of analogs of fungal elicitors like arachidonic acid. Quite the contrary, treatment of plants with a competitive inhibitor of PAL downs natural barriers and in a same way the effects of cross protection and arachidonic treatment. Seven phenolic compounds, mainly benzoic acid derivatives, inhibit in vitro the growth of pathogen like spores germination. The variability of the host reaction and its stimulation by elicitors could be used to improve the resistance.  相似文献   

9.
Fusarium oxysporum f. sp. cucumerinum is a destructive pathogen on cucumber (Cucumis sativus L.) seedlings and the causal organism of crown and root rot of cucumber plants. An isolate of B579, which was identified as Bacillus subtilis by 16S rDNA sequences analysis, was selected from 158 bacteria isolates as the best antagonist against F. oxysporum by dual plate assay. The production of chitinase, β-1, 3-glucanase, siderophores, indole-3-acetic acid (IAA), hydrogen cyanide (HCN), and phosphate solubilization, by B579 were screened with the selected medium by in vitro tests. The cell-free culture filtrate of B579, with a concentration of 20% (v/v), could result in the vacuolation, swelling and lysis of hyphae. Besides, it could blacken, shrunk and hindered the germination of conidia of F. oxysporum at the concentration of ≥80% (v/v). When applied as inoculants, B579 (108 c.f.u. ml?1) was able to reduce disease incidence by 73.60%, and promote seedling growth in pot trial studies. The activities of plant defense-related enzyme, peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) were significantly increased in plants treated with B579. Interestingly, a higher content of IAA, an important plant growth regulator, was detected in B579 treated plants. Furthermore, seed-soaking with B579 exhibited a better biological control effect (Biocontrol effect 73.60%) and plant growth promoting ability (Vigor Index 4,177.53) than root-irrigation (50.88% and 3,575.77, respectively), suggesting the potential use of B579 as a seed-coating agent.  相似文献   

10.
Chinese medicinal plants and their surrounding rhizospheric soil serve as promising sources of actinobacteria. A total of 180 actinobacteria strains were isolated from the rhizosphere soil, leaves, stems, and roots of nine selected plants and have been identified as potential biocontrol agents against Fusarium oxysporum f. sp. cucumerinum. An endophytic strain CNS-42 isolated from Alisma orientale showed the largest zone of inhibition demonstrating a potent effect against F. oxysporum f. sp. cucumerinum and a broad antimicrobial activity against bacteria, yeasts, and other pathogenic fungi. The in vivo biocontrol assays showed that the disease severity index was significantly reduced (P < 0.05), and plant shoot fresh weight and height increased greatly (P < 0.05) in plantlets treated with strain CNS-42 compared to the negative control. This isolate was identified as Streptomyces sp. based on cultural, physiological, morphological characteristics, and 16S rRNA gene analysis. Further bioassay-guided isolation and purification revealed that staurosporine was responsible for its antifungal and plant growth promoting activities and the latter property of staurosporine is reported for the first time. The in vivo assay was further performed and indicated that staurosporine showed good growth promoting effect on the plant shoot biomass of cucumber. This is the first critical evidence identifying CNS-42 as a biocontrol agent for the soil borne pathogen, F. oxysporum f. sp. cucumerinum.  相似文献   

11.
The options for managing Fusarium wilt in greenhouse cucumbers are limited by our poor understanding of the modes of survival and dissemination of the pathogen. This study uses a specific quantitative real‐time PCR assay for Fusarium oxysporum f. sp. cucumerinum to investigate the significance of flying insects as aerial vectors of the pathogen in a commercial cucumber greenhouse. Shore flies were more frequently detected (35.5%) carrying F. oxysporum f. sp. cucumerinum than sciarids (25%), with both species carrying between 1 × 102 and 1 × 106 pathogen genome copies/individual. Sciarid and shore flies acquired F. oxysporum f. sp. cucumerinum following exposures to agar cultures of the pathogen of up to 94 h. Light microscopy revealed that spores were carried externally on the bodies of the adult flies. The ability of adult sciarid flies to vector the pathogen from peat‐grown diseased cucumber plants and infect healthy cucumber plants was demonstrated in a caged glasshouse trial. An inoculum density trial showed that vascular wilt disease was initiated after inoculation of peat‐grown seedlings with as few as 1000 conidia. We conclude that sciarid and shore flies play significant roles as vectors of F. oxysporum f. sp. cucumerinum in greenhouse cucumbers and need to be recognized in developing integrated crop management strategies.  相似文献   

12.
13.
Biocontrol of wilt disease complex of pea caused by the root-knot nematode Meloidogyne incognita and Fusarium oxysporum f. sp. pisi was studied on pea (Pisum sativum L.) using plant growth-promoting rhizobacterium Pseudomonas fluorescens and root nodule bacterium Rhizobium sp. Inoculation of M. incognita and F.oxysporum alone caused significant reductions in plant growth over un-inoculated control. Reduction in plant growth caused by M. incognita was statistically equal to that caused by F. oxysporum. Inoculation of M. incognita plus F. oxysporum together caused a greater reduction in plant growth than the sum of damage caused by these pathogens singly. Inoculation of P. fluorescens and Rhizobium sp. individually or both together increased plant growth in pathogen inoculated and un-inoculated plants. Inoculation of P. fluorescens to pathogen-inoculated plants caused a greater increase in plant growth than caused by Rhizobium sp. Application of Rhizobium plus P. fluorescens caused a greater increase in plant growth than caused by each of them singly. Inoculation of P.fluorescens caused higher reduction in galling and nematode multiplication than caused by Rhizobium sp. Use of Rhizobium plus P. fluorescens caused higher reduction in galling and nematode multiplication than their individual inoculation. Plants inoculated with both pathogens plus Rhizobium showed less nodulation than plants inoculated with single pathogen plus Rhizobium. Inoculation of Rhizobium plus P. fluorescens resulted in higher root-nodulation than inoculated only with Rhizobium. Wilting indices were 4 and 5, respectively, when plants were inoculated with F. oxysporum and F. oxysporum plus M. incognita. Wilting indices were reduced maximum to 1 and 2, respectively, when plants inoculated with F.oxysporum and plants with both pathogens were treated with P. fluorescens plus Rhizobium.  相似文献   

14.
Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild‐type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone‐related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild‐type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine‐ and leucine‐conjugated jasmonate (JA‐Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA‐Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis.  相似文献   

15.
In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1‐like sequences were observed in most cases; however, RALF27‐like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27‐like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen‐activated protein kinase activation). Gene expression analysis confirmed that a RALF‐encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant–pathogen interactions.  相似文献   

16.
Summary Fusarium oxysporum f. sp.dianthi, pathogenic on carnation plants is very sensitive toBacillus subtilis M51 inhibition.Fusarium oxysporum disease (fusariosis) is prevented for a period of two months after treatment of plants withBacillus subtilis M51. The persistence ofB. subtilis M51, marked for selenomycin resistance (MZ51) and inoculated on the roots of carnation cuttings was studied. Soil used was two types: naturally infested withFusarium oxysporum and free from this pathogen. Bacterial cells presence on the roots was detected by direct plating and the presence of the pathogen in the roots was investigated by histological assays. Evidence gathered by these procedures suggest that plant protection is dependent on the physical presence ofB. subtilis M51 cells on the roots.  相似文献   

17.
18.
Polyclonal antiserum was elicited against a strain of Fusarium oxysporum f.sp. narcissi (GCRI80/26) and a specific and sensitive enzyme-linked immunosorbent assay developed. Antiserum raised to cell wall fractions gave better recognition than that to cytoplasmic fractions. Recognition was equally good in artificially and naturally infected bulbs. Little cross-reactivity in bulb tissue was shown by three other bulb-rotting fungi. Nine isolates of F. oxysporum f.sp. narcissi from a wide geographic area gave similar results in an indirect ELISA of mycelial extracts, although some cross-reactivity was observed with two other Fusarium spp. Four Fusarium spp. and four other fungi showed little cross-reactivity. Ten days after inoculation the pathogen was readily detected in the base plate area of three Narcissus cultivars and points remote from the inoculation site in the most susceptible cultivar. A direct correlation was observed between positive results in the enzyme-linked immunosorbent assay and recovery of the pathogen on selective medium.  相似文献   

19.
Wilt is the most destructive disease of guava in India. Fusarium oxysporum f. sp. psidii and Fusarium solani are reported as most commonly isolated pathogens and are considered to be associated singly or in combination with roots of wilt affected plants of guava (Psidium guajava L.). Histopathological observations were made of the roots of wilt affected guava plants in the present investigation. The observations of wilted guava root showed disintegration/necrosis of the epidermal tissue, cortex tissue and vascular bundle cells. In T.S. of root of wilted plant the normal shape of the epidermis was disrupted and there was breaking and opening in the epidermis through which pathogen may enter in the host tissue. Necrosis of the internal tissue and vascular bundle restricts the movement of water and nutrient and thus results wilting.  相似文献   

20.
Effects of arbuscular mycorrhizal (AM) symbiosis on health ofLinum usitatissimum infected by fungal pathogens were investigated exemplarily. Physiological and biochemical analyses were done to explain the mechanisms underlying the AM effects. AM plants showed increased resistance against the wilt pathogen (Fusarium oxysporum f. sp.lini), the level of this effects depended on the plant cultivars which all showed the same level of root colonization by arbuscular mycorrhizal fungi (AMF). In contrary to that, AM plants were highly susceptible against the shoot pathogenOidium lini, but they suffered less than non-AM plants in terms of shoot fresh weight, CO2 assimilation and content of sucrose in shoot apex. This indicates that AM not only activates resistance mechanisms but also can induce tolerance against pathogens. The concentration of phytohormones such as auxin- and gibberellin-like substances were increased in shoots of AM plants. In roots the ethylene production was increased, too. Furthermore the content and composition of free sterols were highly altered in leaves of AM plants. Root infection by AMF caused an increased respiratory activity and a reduced degree of DNA methylation, but both modifications only occurred in infected root parts indicating an increasing gene activity. The presented results suggest that nearly all parts of a plant are influenced by AM but not in the same manner. In the case of mildewed linseed the effect of AM on plant health was impressing, it indicates that AM has an ability to induce tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号