首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acylation-stimulating protein (ASP) is a lipogenic hormone secreted by white adipose tissue (WAT). Male C3 knockout (KO; C3(-/-)) ASP-deficient mice have delayed postprandial triglyceride (TG) clearance and reduced WAT mass. The objective of this study was to examine the mechanism(s) by which ASP deficiency induces differences in postprandial TG clearance and body composition in male KO mice. Except for increased (3)H-labeled nonesterified fatty acid (NEFA) trapping in brown adipose tissue (BAT) of KO mice (P = 0.02), there were no intrinsic tissue differences between wild-type (WT) and KO mice in (3)H-NEFA or [(14)C]glucose oxidation, TG synthesis or lipolysis in WAT, muscle, or liver. There were no differences in WAT or skeletal muscle hydrolysis, uptake, and storage of [(3)H]triolein substrate [in situ lipoprotein lipase (LPL) activity]. ASP, however, increased in situ LPL activity in WAT (+64.8%, P = 0.02) but decreased it in muscle (-35.0%, P = 0.0002). In addition, after prelabeling WAT with [(3)H]oleate and [(14)C]glucose, ASP increased (3)H-lipid retention, [(3)H]TG synthesis, and [(3)H]TG-to-[(14)C]TG ratio, whereas it decreased (3)H-NEFA release, indicating increased NEFA trapping in WAT. Conversely, in muscle, ASP induced effects opposite to those in WAT and increased lipolysis, indicating reduced NEFA trapping within muscle by ASP (P < 0.05 for all parameters). In conclusion, novel data in this study suggest that 1) there is little intrinsic difference between KO and WT tissue in the parameters examined and 2) ASP differentially regulates in situ LPL activity and NEFA trapping in WAT and skeletal muscle, which may promote optimal insulin sensitivity in vivo.  相似文献   

2.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

3.
Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.  相似文献   

4.
Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (-40%) and TG (-63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (-90%) and strongly decreased ketone body concentrations in plasma (-80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an "anti-atherogenic" lipoprotein profile.  相似文献   

5.
We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.  相似文献   

6.
The VLDL receptor (VLDLr) is involved in tissue delivery of VLDL-triglyceride (TG)-derived FFA by facilitating the expression of lipoprotein lipase (LPL). However, vldlr-/- mice do not show altered plasma lipoprotein levels, despite reduced LPL expression. Because LPL activity is crucial in postprandial lipid metabolism, we investigated whether the VLDLr plays a role in chylomicron clearance. Fed plasma TG levels of vldlr-/- mice were 2.5-fold increased compared with those of vldlr+/+ littermates (1.20 +/- 0.37 mM vs. 0.47 +/- 0.18 mM; P < 0.001). Strikingly, an intragastric fat load led to a 9-fold increased postprandial TG response in vldlr-/- compared with vldlr+/+ mice (226 +/- 188 mM/h vs. 25 +/- 11 mM/h; P < 0.05). Accordingly, the plasma clearance of [3H]TG-labeled protein-free chylomicron-mimicking emulsion particles was delayed in vldlr-/- compared with vldlr+/+ mice (half-life of 12.0 +/- 2.6 min vs. 5.5 +/- 0.9 min; P < 0.05), with a 60% decreased uptake of label into adipose tissue (P < 0.05). VLDLr deficiency did not affect the plasma half-life and adipose tissue uptake of albumin-complexed [14C]FFA, indicating that the VLDLr facilitates postprandial LPL-mediated TG hydrolysis rather than mediating FFA uptake. We conclude that the VLDLr plays a major role in the metabolism of postprandial lipoproteins by enhancing LPL-mediated TG hydrolysis.  相似文献   

7.
Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels. Interestingly, recent evidence points to a prominent role of the hypothalamus in TG metabolism through innervating the liver, WAT, and BAT mainly via sympathetic branches of the autonomic nervous system. Here, we review the recent findings in the area of sympathetic control of TG metabolism. Various neuronal populations, such as neuropeptide Y (NPY)-expressing neurons and melanocortin-expressing neurons, as well as peripherally produced hormones (i.e., GLP-1, leptin, and insulin), modulate sympathetic outflow from the hypothalamus toward target organs and thereby influence peripheral TG metabolism. We conclude that sympathetic stimulation in general increases lipolysis in WAT, enhances VLDL-TG production by the liver, and increases the activity of BAT with respect to lipolysis of TG, followed by combustion of fatty acids toward heat. Moreover, the increased knowledge about the involvement of the neuroendocrine system in TG metabolism presented in this review offers new therapeutic options to fight hypertriglyceridemia by specifically modulating sympathetic nervous system outflow toward liver, BAT, or WAT.  相似文献   

8.
Previous studies have shown that overexpression of human apolipoprotein C-I (apoC-I) results in moderate hypercholesterolemia and severe hypertriglyceridemia in mice in the presence and absence of apoE. We assessed whether physiological endogenous apoC-I levels are sufficient to modulate plasma lipid levels independently of effects of apoE on lipid metabolism by comparing apolipoprotein E gene-deficient/apolipoprotein C-I gene-deficient (apoe-/-apoc1-/-), apoe-/-apoc1+/-, and apoe-/-apoc1+/+ mice. The presence of the apoC-I gene-dose-dependently increased plasma cholesterol (+45%; P < 0.001) and triglycerides (TGs) (+137%; P < 0.001), both specific for VLDL. Whereas apoC-I did not affect intestinal [3H]TG absorption, it increased the production rate of hepatic VLDL-TG (+35%; P < 0.05) and VLDL-[35S]apoB (+39%; P < 0.01). In addition, apoC-I increased the postprandial TG response to an intragastric olive oil load (+120%; P < 0.05) and decreased the uptake of [3H]TG-derived FFAs from intravenously administered VLDL-like emulsion particles by gonadal and perirenal white adipose tissue (WAT) (-34% and -25%, respectively; P < 0.05). As LPL is the main enzyme involved in the clearance of TG-derived FFAs by WAT, and total postheparin plasma LPL levels were unaffected, these data demonstrate that endogenous apoC-I suffices to attenuate the lipolytic activity of LPL. Thus, we conclude that endogenous plasma apoC-I increases VLDL-total cholesterol and VLDL-TG dose-dependently in apoe-/- mice, resulting from increased VLDL particle production and LPL inhibition.  相似文献   

9.
Chronic intermittent hypoxia (CIH) inhibits plasma lipoprotein clearance and adipose lipoprotein lipase (LPL) activity in association with upregulation of an LPL inhibitor angiopoietin-like protein 4 (Angptl4). We hypothesize that CIH inhibits triglyceride (TG) uptake via Angptl4 and that an anti-Angptl4-neutralizing antibody would abolish the effects of CIH. Male C57BL/6J mice were exposed to four weeks of CIH or intermittent air (IA) while treated with Ab (30 mg/kg ip once a week). TG clearance was assessed by [H3]triolein administration retroorbitally. CIH delayed TG clearance and suppressed TG uptake and LPL activity in all white adipose tissue depots, brown adipose tissue, and lungs, whereas heart, liver, and spleen were not affected. CD146+ CD11b− pulmonary microvascular endothelial cells were responsible for TG uptake in the lungs and its inhibition by CIH. Antibody to Angptl4 decreased plasma TG levels and increased TG clearance and uptake into adipose tissue and lungs in both control and CIH mice to a similar extent, but did not reverse the effects of CIH. The antibody reversed the effects of CIH on LPL in adipose tissue and lungs. In conclusion, CIH inactivates LPL by upregulating Angptl4, but inhibition of TG uptake occurs predominantly via an Angptl4/LPL-independent mechanism.  相似文献   

10.
BackgroundObstructive sleep apnea syndrome (OSAS) is associated to intermittent hypoxia (IH) and is an aggravating factor of non-alcoholic fatty liver disease (NAFLD). We investigated the effects of hypoxia in both in vitro and in vivo models of NAFLD.MethodsPrimary rat hepatocytes treated with free fatty acids (FFA) were subjected to chemically induced hypoxia (CH) using the hypoxia-inducible factor-1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Triglyceride (TG) content, mitochondrial superoxide production, cell death rates, cytokine and inflammasome components gene expression and protein levels of cleaved caspase-1 were assessed. Also, Kupffer cells (KC) were treated with conditioned medium (CM) and extracellular vehicles (EVs) from hypoxic fat-laden hepatic cells. The choline deficient L-amino acid defined (CDAA)-feeding model used to assess the effects of IH on experimental NAFLD in vivo.ResultsHypoxia induced HIF-1α in cells and animals. Hepatocytes exposed to FFA and CoCl2 exhibited increased TG content and higher cell death rates as well as increased mitochondrial superoxide production and mRNA levels of pro-inflammatory cytokines and of inflammasome-components interleukin-1β, NLRP3 and ASC. Protein levels of cleaved caspase-1 increased in CH-exposed hepatocytes. CM and EVs from hypoxic fat-laden hepatic cells evoked a pro-inflammatory phenotype in KC. Livers from CDAA-fed mice exposed to IH exhibited increased mRNA levels of pro-inflammatory and inflammasome genes and increased levels of cleaved caspase-1.ConclusionHypoxia promotes inflammatory signals including inflammasome/caspase-1 activation in fat-laden hepatocytes and contributes to cellular crosstalk with KC by release of EVs. These mechanisms may underlie the aggravating effect of OSAS on NAFLD. [Abstract word count: 257].  相似文献   

11.
Lipoprotein lipase (LPL), a key enzyme for triglyceride hydrolysis, is an insulin-dependent enzyme and mainly synthesized in white adipose tissue (WAT) and skeletal muscles (SM). To explore how pioglitazone, an enhancer of insulin action, affects LPL synthesis, we examined the effect of pioglitazone on LPL mRNA levels in WAT or SM of brown adipose tissue (BAT)-deficient mice, which develop insulin resistance and hypertriglyceridemia. Both LPL mRNA of WAT and SM were halved in BAT-deficient mice. Pioglitazone increased LPL mRNA in WAT by 8-fold, which was substantially associated with a 4-fold increase of peroxisome proliferator activated receptor (PPAR)-gamma mRNA (r=0.97, p<0.0001), whereas pioglitazone did not affect LPL mRNA in SM. These results suggest that pioglitazone exclusively increases LPL production in WAT via stimulation of PPAR-gamma synthesis. Since pioglitazone does not affect LPL production in SM, this would contribute to prevent the development of insulin resistance due to lipotoxicity.  相似文献   

12.
The obesity epidemic is associated with an increased incidence of type 2 diabetes, cardiovascular morbidity and various types of cancer. A better insight into the molecular mechanisms that underlie adipogenesis and obesity may result in novel therapeutic handles to fight obesity and these associated diseases. Adipogenesis is determined by the balance between uptake of fatty acids (FA) from plasma into adipocytes, intracellular FA oxidation versus esterification of FA into triglycerides (TG), lipolysis of TG by intracellular lipases, and secretion of FA from adipocytes. Here, we review the mechanisms that are specifically involved in the entry of FA into adipose tissue. In plasma, these originating FA are either present as TG within apoB-containing lipoproteins (i.e. chylomicrons and VLDL) or as free FA bound to albumin. Kinetic studies, however, have revealed that TG are the major source of FA entering adipose tissue, both in the fed and fasted condition. In fact, studies with genetically engineered mice have revealed that the activity of lipoprotein lipase (LPL) is a major determinant for the development of obesity. As a general rule, high fat diet-induced adipogenesis is aggravated by stimulated LPL activity (e.g. by adipose tissue-specific overexpression of LPL or deficiency for apoCIII), and attenuated by inhibited LPL activity (e.g. by adipose-specific deficiency for LPL, overexpression of apoCI or angptl4, or by deficiency for apoE or the VLDL receptor). In addition, we describe that the trans-membrane transport of FA and cytoplasmic binding of FA in adipocytes can also dramatically affect adipogenesis. The relevance of these findings for human pathophysiology is discussed.  相似文献   

13.
The mobilization of free fatty acids from adipose triacylglycerol (TG) stores requires the activities of triacylglycerol lipases. In this study, we demonstrate that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major enzymes contributing to TG breakdown in in vitro assays and in organ cultures of murine white adipose tissue (WAT). To differentiate between ATGL- and HSL-specific activities in cytosolic preparations of WAT and to determine the relative contribution of these TG hydrolases to the lipolytic catabolism of fat, mutant mouse models lacking ATGL or HSL and a mono-specific, small molecule inhibitor for HSL (76-0079) were used. We show that 76-0079 had no effect on TG catabolism in HSL-deficient WAT but, in contrast, essentially abolished free fatty acid mobilization in ATGL-deficient fat. CGI-58, a recently identified coactivator of ATGL, stimulates TG hydrolase activity in wild-type and HSL-deficient WAT but not in ATGL-deficient WAT, suggesting that ATGL is the sole target for CGI-58-mediated activation of adipose lipolysis. Together, ATGL and HSL are responsible for more than 95% of the TG hydrolase activity present in murine WAT. Additional known or unknown lipases appear to play only a quantitatively minor role in fat cell lipolysis.  相似文献   

14.
Significant increases in the concentration of plasma glucagon-like immunoreactivity (GLI) and plasma levels of free fatty acids (FFA) and triglycerides (TG) concomitant with decreases in circulating levels of thyroxine (T4) and triiodothyronine (T3) and T3/T4 ratio were observed in homing pigeons, untrained for 3 months, after a flight of 48 km lasting 90-160 min. The increased level of FFA is attributed to glucagon stimulated lipolysis. The elevation of TG levels may be due to altered partitioning and utilization of lipoprotein in adipose tissue and muscle. Reductions in plasma T4, T3 and T3/T4 ratio are probably due to inhibition of T4 secretion and 5'-monodeiodination with possible conversion of T4 to reverse T3 (rT3). These processes may represent a mechanism for regulation of thyroid hormone metabolism during strenuous and extended flight.  相似文献   

15.
Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) are insulin sensitizers that potently improve lipemia in rodents. This study aimed to determine the contribution of lipid secretion vs. clearance and the involvement of white adipose tissue (WAT) and brown adipose tissue (BAT) in the rapid hypolipidemic action of PPARgamma agonism. Male rats were treated with rosiglitazone (RSG; 15 mg x kg(-1) x day(-1)) for 1 to 4 days, and determinants of lipid metabolism were assessed postprandially. Serum triglycerides (TG) were lowered (-54%) after 3 days of RSG treatment, due to accelerated clearance from blood without contribution of changes in secretion rates. Both BAT and WAT were the major sites of RSG action on TG clearance, the increase in TG-derived fatty acid (FA) uptake reaching threefold in BAT and 60-90% in WAT depots. Accelerated TG clearance was associated with increased lipoprotein lipase (LPL) activity mostly in BAT. Serum nonesterified FA were lowered (-20%) by a single dose of RSG, an effect associated with increased expression levels of FA binding/transport (fatty acid binding protein-4), esterification (diacylglycerol acyltransferase-1), and recycling glycerol kinase and phosphoenolpyruvate carboxykinase enzymes in BAT and WAT, suggesting FA trapping. After 4 days of RSG treatment, nonesterified fatty acid (NEFA) uptake was also stimulated in both BAT (2.5-fold) and WAT (40%). These findings demonstrate the causal involvement of increased efficiency of LPL-mediated TG clearance and reveal the important contribution of TG-derived and albumin-bound FA uptake by BAT in the rapid hypolipidemic action of PPARgamma agonism in the rat.  相似文献   

16.
17.
Triiodothyroacetic acid (TRIAC) is a physiological product of triiodothyronine (T(3)) metabolism, with high affinity for T(3) nuclear receptors. Its interest stems from its potential thermogenic effects. Thus this work aimed 1) to clarify these thermogenic effects mediated by TRIAC vs. T(3) in vivo and 2) to determine whether they occurred predominantly in adipose tissues. To examine this, control rats were infused with equimolar T(3) or TRIAC doses (0.8 or 4 nmolx100 g body wt(-1) x day(-1)) or exposed for 48 h to cold. Both T(3) doses and only the highest TRIAC dose inhibited plasma and pituitary thyroid-stimulating hormone (TSH) and thyroxine (T(4)) in plasma and tissues. Interestingly, the lower TRIAC dose marginally inhibited plasma T(4). T(3) infusion increased plasma and tissue T(3) in a tissue-specific manner. The highest TRIAC dose increased TRIAC concentrations in plasma and tissues, decreasing plasma T(3). TRIAC concentrations in tissues were <10% those of T(3). Under cold exposure or high T(3) doses, TRIAC increased only in white adipose tissue (WAT). Remarkably, only the lower TRIAC dose activated thermogenesis, inducing ectopic uncoupling protein (UCP)-1 expression in WAT and maximal increases in UCP-1, UCP-2, and lipoprotein lipase (LPL) expression in brown adipose tissue (BAT), inhibiting UCP-2 in muscle and LPL in WAT. TRIAC, T(3), and cold exposure inhibited leptin secretion and mRNA in WAT. In summary, TRIAC, at low doses, induces thermogenic effects in adipose tissues without concomitant inhibition of TSH or hypothyroxinemia, suggesting a specific role regulating energy balance. This selective effect of TRIAC in adipose tissues might be considered a potential tool to increase energy metabolism.  相似文献   

18.
These studies were conducted to assess the relationship between visceral adipose tissue free fatty acid (FFA) release and splanchnic FFA release. Steady-state splanchnic bed palmitate ([9,10-(3)H]palmitate) kinetics were determined from 14 sampling intervals from eight dogs with chronic indwelling arterial, portal vein, and hepatic vein catheters. We tested a model designed to predict the proportion of FFAs delivered to the liver from visceral fat by use of hepatic vein data. The model predicted that 15 +/- 2% of hepatic palmitate delivery originated from visceral lipolysis, which was greater (P = 0.004) than the 11 +/- 2% actually observed. There was a good relationship (r(2) = 0.63) between the predicted and observed hepatic palmitate delivery values, but the model overestimated visceral FFA release more at lower than at higher palmitate concentrations. The discrepancy could be due to differential uptake of FFAs arriving from the arterial vs. the portal vein or to release of FFAs in the hepatic circulatory bed. Splanchnic FFA release measured using hepatic vein samples was strongly related to visceral adipose tissue FFA release into the portal vein. This finding suggests that splanchnic FFA release is a good indicator of visceral adipose tissue lipolysis.  相似文献   

19.
Prior studies have suggested that FAs liberated in the small intestine from ingested 1,3-diacylglycerol (DAG) are inefficiently incorporated into triglyceride (TG) in enterocytes, with less chylomicron TG entering the circulation postprandially. We found less TG, but more monacylglyerol and DAG, with similar total acylglycerol in newly secreted chylomicrons after oral DAG or triacylglycerol (TAG). However, clearance of DAG-chylomicrons was more rapid than that of TAG-chylomicrons; this was associated with more efficient in vitro LPL-mediated lipolysis of DAG-derived chylomicrons. Intravenously infused DAG was also cleared faster than TAG in normal mice, via both LPL-mediated lipolysis and apolipoprotein E (apoE)-dependent hepatic uptake. Infusions of TAG, but not DAG, increased plasma TG levels. Greater delivery of DAG-derived FA to the liver during infusion of DAG led to greater TG secretion versus TAG; this allowed the maintenance of similar hepatic TG levels after DAG and TAG infusions. Of note, apoB secretion was similar after DAG versus TAG, indicating the assembly of larger very low density lipoproteins after DAG. In conclusion, reduced plasma TG levels, after oral or intravenous DAG, result from more efficient clearance of DAG by both LPL lipolysis and apoE-mediated hepatic endocytosis. DAG emulsions may by useful for intravenous nutrition in people with preexisting hypertriglyceridemia.  相似文献   

20.
The authors studied the effect of a single in vivo dose of oestradiol (OE) on adrenergic lipolysis in the epididymal adipose tissue of adult and juvenile male rats, and the effect of OE on plasma free fatty acids (FFA), cholesterol and beta-lipoprotein levels at various intervals after its administration. It was found that OE injected 24 h beforehand in vivo (s.c.), in doses of 100 and 200 micrograms X kg-1 body weight, significantly potentiated the lipid-mobilizing action of the catecholamines noradrenaline (NOR) and isoprenaline (ISO) in adult rats (the action of ISO was potentiated more intensively); in addition, the adipose tissue became more sensitive to the action of NOR, but not of ISO. Raising the dose of OE to 400 micrograms X kg-1 did not enhance the potentiation of the lipolytic action of the catecholamines any further; on the contrary, the lipid mobilizing effect of the catecholamines was potentiated less than after half this dose. Following the s.c. injection of an oily OE solution, the lipolytic effect was potentiated after more than 7 h; the potentiation was strongest after 12 h, but only as far as the maximum attainable degree of lipolysis was concerned. Potentiation of adrenergic lipolysis was found only in adult male rats. In male rats weighing 130-150 g the lipolytic effect of catecholamines (in mumol/g adipose tissue) was significantly greater than in adult animals and the pre-administration of OE did not potentiate adrenergic lipolysis any further. Determination of plasma FFA, cholesterol and beta-lipoprotein levels 1, 2, 4 and 6 hours after the s.c. injection of OE showed only nonsignificant changes (an increase in FFA and a decrease in cholesterol). The authors consider it important to distinguish between the effect of OE on catecholamine-stimulated lipolysis in depot adipose tissue and its effect on lipid metabolism. In their opinion, the dose-dependent effect of OE on muscular and metabolic adrenergic reactions could be one of the factors co-reversible for certain side reactions to steroid contraceptives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号