首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
To better understand the control of T helper (TH) 1-expressed genes, we compared and contrasted acetylation and expression for three key genes, IFNG, TBET, and IL18RAP and found them to be distinctly regulated. The TBET and the IFNG genes, but not the IL18RAP gene, showed preferential acetylation of histones H3 and H4 during TH1 differentiation. Analysis of acetylation of specific histone residues revealed that H3(Lys-9), H4(Lys-8), and H4(Lys-12) were preferentially modified in TH1 cells, suggesting a possible contribution of acetylation of these residues for induction of these genes. On the other hand, the acetylation of IL18RAP gene occurred both in TH1 and TH2 cells the similar kinetics and on the same with residues, demonstrating that selective histone acetylation was not universally the case for all TH1-expressed genes. Histone H3 acetylation of IFNG and TBET genes occurred with different kinetics, however, and was distinctively regulated by cytokines. Interleukin (IL)-12 and IL-18 enhanced the histone acetylation of the IFNG gene. By contrast, histone acetylation of the TBET gene was markedly suppressed by IL-4, whereas IL-12 and IL-18 had only modest effects suggesting that histone acetylation during TH1 differentiation is a process that is regulated by various factors at multiple levels. By treating Th2 cells with a histone deacetylase inhibitor, we restored histone acetylation of the IFNG and TBET genes, but it did not fully restore their expression in TH2 cells, again suggesting that histone acetylation explains one but not all the aspects of TH1-specific gene expression.  相似文献   

2.
Genomewide histone acetylation microarrays   总被引:2,自引:0,他引:2  
Histone acetylation and methylation are important regulators of gene activity. Chromatin immunoprecipitation (ChIP or ChrIP) has made it possible to examine not only the state of histone acetylation at a gene but also that of histone methylation and may soon be extended to other histone modifications such as phosphorylation and ubiquitination. In principle such studies are possible as long as an antibody is available to the particular histone modification. Once a target gene is identified it is instructive to see the effect of mutating putative enzymes responsible for the modification to determine how a particular enzyme is responsible for altering chromatin of that gene. Although specific target genes have been studied that contain such modifications recent technical advances have made it possible to study histone modifications genomewide. This not only allows for alternate views of particular paradigms to be investigated, but also uncovers chromosomal patterns of histone modification that would be missed in analyzing individual genes. We describe here an approach to rapidly study histone modifications genomewide by combining chromatin immunoprecipitation and DNA microarrays.  相似文献   

3.
4.
5.
6.
7.
Chromatin phenotype is known to be significantly disrupted in cancer. This has been demonstrated in many morphologic studies on cancer and in recent years by the application of digital texture analysis for quantitative evaluation of chromatin phenotype in neoplasia. Studies have consistently demonstrated the role of chromatin phenotype as a biomarker of diagnosis and prognosis. The underlying molecular mechanisms for chromatin reorganization and its role as a biomarker are largely unknown, but epigenetic processes are likely to be a main factor that not only modify chromatin arrangement but in doing so alter gene expression profiles in a reversible fashion. Of the range of epigenetic modifications that might control chromatin phenotype, histone acetylation is a strong candidate because of its role in the direct modification of chromatin, both through local relaxation of nucleosomal structure and recruitment of chromatin remodeling complexes. The reversible nature of histone acetylation is therapeutically attractive for treatment of aberrant histone acetylation; however, it still remains to be seen whether histone deacetylase inhibitors are clinically applicable or for use primarily as valuable research tools. This review explores the role of histone acetylation in cancer development, as a potential therapeutic candidate and a potential biomarker in tissue pathology.  相似文献   

8.
9.
10.
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes - a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well-characterised imprinted Igf2-H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental-specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2-H19 domains.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号