首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pigments and biomass of anoxygenic phototrophic bacteria were measured during a year cycle in Lake Cisó (Girona, Spain). Two genera, Chromatium and Chlorobium, accounted for most of the bacterial population. The bacteria were present throughout the year despite complete mixing of the lake during fall and winter. This was possible because the sulfide production in the sediment was high enough to make the lake anaerobic to the very surface. Solar radiation, temperature, and biomass of Chromatium sp. were found to be important in determining pigment concentrations by correlation analysis. Sulfide concentration and biomass of Chlorobium spp. were found to be unimportant. A path analysis was performed to determine what percentage of the variability of pigments could be explained by the variables studied. Since a high percentage could be explained, it was possible to conclude that solar radiation, temperature, and biomass of Chromatium sp. were the main variables.  相似文献   

2.
The pigments and biomass of anoxygenic phototrophic bacteria were measured during a year cycle in Lake Cisó (Girona, Spain). Two genera, Chromatium and Chlorobium, accounted for most of the bacterial population. The bacteria were present throughout the year despite complete mixing of the lake during fall and winter. This was possible because the sulfide production in the sediment was high enough to make the lake anaerobic to the very surface. Solar radiation, temperature, and biomass of Chromatium sp. were found to be important in determining pigment concentrations by correlation analysis. Sulfide concentration and biomass of Chlorobium spp. were found to be unimportant. A path analysis was performed to determine what percentage of the variability of pigments could be explained by the variables studied. Since a high percentage could be explained, it was possible to conclude that solar radiation, temperature, and biomass of Chromatium sp. were the main variables.  相似文献   

3.
1. Surface sediment biofilm samples from 82 Pyrenean lakes were analysed for marker pigment composition using high performance liquid chromatography (HPLC). 2. Variability in the pigment composition among lakes was investigated by multivariate statistical analyses using a large data set of factors describing lake chemical, physical, morphological and catchment characteristics. 3. Due to the widely varying light penetration in the lakes, the most significant gradient of pigment composition extended from a benthic to a planktonic signal. The most important pigments in the gradient were alloxanthin (cryptophytes marker pigment, planktonic signal) and diatoxanthin (diatoms marker pigment, benthic signal). The molar ratio between these two marker pigments was positively correlated with lake depth. 4. Chlorophyll‐a preservation was found to be positively related to light penetration and the development of an autothrophic biofilm on the surface sediment and negatively related to decreasing pH and the percentage of alpine meadows in the lake catchments. 5. Zooplankton marker pigments in the surface sediment, including grazing by‐products (e.g. phaeophorbides) and carotenoids (astaxanthin, canthaxanthin, echinenone) incorporated into their tissues, were correlated with the areal abundance of zooplankton. 6. Marker pigments for photosynthetic bacteria, BChl‐e and okenone, were found mainly in relatively shallow lakes with large catchments that are forested, probably because of their higher loading of allochthonous organic matter. 7. The evaluation of a preservation index (Chl‐a expressed as a percentage of a‐phorbins) and the alloxanthin/diatoxanthin ratios throughout the sediment record of mountain lakes can provide evidence of historical changes in the relative importance of planktonic versus benthic primary production and might ultimately be interpreted in terms of climatic or environmental changes.  相似文献   

4.
1. How climate warming may interact with other pressures on aquatic ecosystems is an important issue for research and management. We combined lake monitoring data with a palaeolimnological study to explore the combined effects of eutrophication and subsequent oligotrophication with a long‐term temperature increase in epilimnetic waters. Our goals were (i) to evaluate how well sediment‐based reconstructions reflect the instrumental observations, (ii) to use the palaeo‐record to characterise a reference state for the lake and (iii) to explore whether data from the sediment record can aid in separating the effects of nutrient load and temperature in a large and deep lake. 2. Lake Mjøsa is a large and deep lake in south‐eastern Norway. Eutrophication symptoms peaked in the 1970s, which led to extensive measures to reduce the phosphorus load. A monitoring programme has run continuously from 1972. Monitoring has documented a marked decrease in phosphorus load and algal biomass and also revealed an increase in epilimnetic temperature and extended summer stratification. 3. Records of algal pigments and diatoms were extracted from sediment cores taken from 236 m depth. The pigment record documented dramatic changes in lake production consistent with the monitoring record. The diatom record reflected well the eutrophication history of the lake and also demonstrated that the assemblage of the recent recovery stage differs from that of the pre‐eutrophication period. 4. Ordination of diatom assemblages over time constrained by proxies for nutrient load and temperature indicated that the diatom assemblage correlated with both factors, which together accounted for 60% of the variation in diatom composition. No interaction was detected between these factors. The results suggest that the diatom assemblage has responded to varying nutrient loads as well as to changes in temperature and/or factors that correlate with temperature. 5. Reconstructions of algal biomass and total phosphorus content mirrored known changes through the monitoring period, although the absolute phosphorus estimates were too high relative to the instrumental record. The sediment record from Lake Mjøsa provides a baseline for lake production in terms of algal pigments and organic contents, and for the diatom assemblage composition in a pristine stage.  相似文献   

5.
Photosynthetic pigments and their derivatives were measured in sediments in the fjordic Loch Eil and the Firth of Lome, Scotland, between November 1975 and November 1976. After acetone extraction from the top 10 mm of sediment cores, pigments were crudely separated, by fluorescence change on acidification, into (chlorophyll a + chlorophyllide a) and phaeopigments. The greatest pigment concentrations (mean 73 μg · g sediment dry wt?1) were found in the most reducing sediments which also had a high average proportion (23%) of chlorophyll. The least mean pigment concentration (23 μg · g?1) and proportion of chlorophyll (17%) were found in the most oxidizing sediments in the Firth of Lorne where there was a clear seasonal cycle, with a peak in sediment pigment concentration and chlorophyll proportion in May and June, just after the planktonic spring increase. The Loch Eil stations showed a less clear or no seasonal cycle; the station most affected by organic input was the most variable from month to month. It was concluded that redox status was the most obvious control of sediment pigment content, whereas the effect of sedimentation of phytoplankton was complex.  相似文献   

6.
1. Contemporary limnological and palaeolimnological data from Piburger See (Eastern Alps, Austria) allowed the reconstruction of its trophic state since the late 19th century and the assessment of changes in phytoplankton biomass and species composition in relation to selected environmental parameters. 2. A radiometrically dated sediment core from Piburger See was analysed for geochemical parameters, spheroidal carbonaceous particles (SCPs), bacterial and algal pigments, and diatoms. The low SCP sediment inventory assigns Piburger See to the ‘cleaner’ sites in Europe with respect to fossil‐fuel related air pollution. The sedimentary pigment and diatom record reveals moderate eutrophication during the 20th century, followed by a slow re‐oligotrophication since the mid‐1980s because of lake restoration starting in 1970. 3. Epilimnetic temperature for Piburger See was reconstructed using air temperature records. A pronounced temperature increase has been recorded during the mid‐1940s and since the late‐20th century, both promoting algal growth and changes in species composition (e.g. increase in centric diatoms and recent bloom of Asterionella formosa). 4. Climate scenarios project additional substantial warming for this mountain lake by the end of the 21st century which will be most pronounced during the growing season. The predicted change in lake water temperature and thermal dynamics represents a key driver for the trophic and ecological status of Piburger See in the future.  相似文献   

7.
Some aspects of the paleoproductivity of meromictic Crawford Lake, near Toronto, are inferred from a study of its sedimentary pigments, and diatoms. Several stages of lake development are observed over the 35 cm-deep sediment core removed from the center of Crawford Lake. Evidence of changes in lake productivity during the last 300 years was reflected by significant stratigraphic sediment pigment changes which were associated with European settlement in the Crawford Lake watershed and recent alterations associated with the area's operation by the Conservation Authority (1969 — present). One of the most important factors correlated with paleoproductivity was land clearance (mainly logging of white oak and pine). Deforestation during the last century is correlated with an increase in the amount of algal pigments deposited in the lake's sediments during the 1800's. During the last 10 years a striking increase in the accumulation of chlorophyll derivatives was observed. This is correlated with a dramatic increase in the number of visitors to the lake.Stratigraphic changes in the ratio of cyanobacterial to phototrophic bacterial pigment accumulation are used to infer changes which occurred during the shift from mesotrophy to eutrophy in Crawford Lake.  相似文献   

8.
SYNOPSIS. The pigments synthesized by Astasia ocellata include α- and ε-carotene, 4-keto-β-carotene (echinenone), and 4,4'-diketo-β-carotene (canthaxanthin); 4-keto-α-carotene, accounting for about half the pigment in the cells, was tentatively identified; a strongly adsorbed keto-carotenoid, accounting for 25% of the pigments and bearing some similarities to astacin, polytomaxanthin and phoenicoxanthin, was also found.  相似文献   

9.
硅酸盐矿物麦饭石对沉水植物生理生态的影响   总被引:1,自引:0,他引:1  
沉水植物的稳定生长是重建健康湖泊生态系统重要环节, 底质条件是沉水植物生长的关键因素。研究通过观测沉水植物生理生态的变化来探讨麦饭石对其影响及作用机理。研究结果表明, 与湖泥组相比, 麦饭石可明显促进沉水植物苦草生长, 覆盖1 cm厚度麦饭石的苦草植株高度、单株生物量优于湖泥组(P<0.05); 改性麦饭石组的苦草株高、单株生物量高于麦饭石原石组(P<0.05)。麦饭石组中两种植物苦草和轮叶黑藻的光合色素、根系活力、丙二醛、过氧化物酶活等指标在一定程度上均优于湖泥组。检测发现麦饭石中含有丰富的植物生长所需的常量和微量元素, 可以明显促进沉水植物生长。可见麦饭石有益于沉水植物生长, 可进一步作为底质改良材料应用于湖泊生态修复工程。  相似文献   

10.
We investigated stratigraphic changes in fossil pigments and the molecular structure of the UV-absorbing fraction of pore-water dissolved organic matter in a sedimentary record from Lake Peipsi (Estonia/Russia) temporally covering the 20th century. The aims of the study were to define the onset of eutrophication in the lake and to track its course. An attempt was also made to reconstruct lake conditions before the intensive nutrient loading began. Fossil pigment analysis indicated that the eutrophication of the lake started in the 1960s and accelerated in the 1970s. Sedimentary pigments also indicate a continuing tendency of the lake ecosystem towards eutrophy in the 1980s and 1990s. However, changes in the molecular size structure of pore-water dissolved organic matter indicated that the contribution of autochthonous matter to the organic pool of the lake ecosystem had already started to increase around the end of the 1930s. We conclude that this rise was generated by a coincidence of several anthropogenic and natural factors. The pore-water data also show that a slight relative reduction in the autochthonous organic matter took place in the 1990s. A discordance in the paleodata obtained for the beginning of the 20th century complicates clear conclusions about earlier conditions in the lake. On the one hand, the qualitative characteristics of pore-water dissolved organic matter and the low concentration of chlorophyll a indicate that the phytoplankton biomass was low in Lake Peipsi during that period. On the other hand, the concentrations of marker pigments of specific phytoplankton groups are high, comparable with the values in the recent sediments. Possible reasons for the high levels of these pigments in the early 1900s sediments, such as a shift in the preservation conditions of organic substances and their transport from the lake’s catchment, are discussed.  相似文献   

11.
Dunaliella is currently drawing worldwide attention as an alternative source of nutraceuticals. Commercially, β-carotene making up over 10 % of Dunaliella biomass is generating the most interest. These compounds, because of their non-toxic properties, have found applications in the food, drug and cosmetic industry. The β-carotene content of Dunaliella cells, however, depends heavily on the growth conditions and especially on the availability of nutrients, salinity, irradiance and temperature in the growth medium. A chemically well defined medium is usually required, which significantly contributes to the cost of pigment production; hence a desire for low cost marine media. The present study aimed at evaluating the suitability of six different media, especially exploiting local potential resources, for the mass production of Dunaliella salina DCCBC15 as functional food and medicine. The efficacy of a new selected low-cost enriched natural seawater medium (MD4), supplemented with industrial N–P–K fertilizer, was investigated with respect to biomass production, chlorophyll, antioxidant capacity, and total carotene by Dunaliella though culture conditions were not optimized yet. This new medium (MD4) appears extremely promising, since it affords a higher production of Dunaliella biomass and pigments compared with the control, a common artificial medium (MD1), while allowing a substantial reduction in the production costs. The medium is also recommended for culturing other marine algae.  相似文献   

12.
Benthic microbial mat communities were sampled from 20 lakes, ponds and streams of the McMurdo Sound region, Antarctica. At least five distinct assemblages could be differentiated by their cyanobacterial species composition, pigment content and vertical structure. The most widely occurring freshwater communities were dominated by thin-trichome (0·5–3 µm) oscillatoriacean species that formed benthic films up to several millimetres thick. ‘Lift-off mats’ produced mucilaginous mats 1–5 cm thick at the surface and edge of certain ponds. Another group of oscillatoriacean communities was characteristic of hypersaline pond environments; these communities were dominated by species with thicker trichomes such as Oscillatoria priestleyi. Black mucilaginous layers of Nostoc commune were widely distributed in aquatic and semi-aquatic habitats. Dark brown sheath pigmentation was also characteristic of less cohesive mats and crusts dominated by Pleurocapsa, Gloeocapsa and Calothrix. High performance liquid chromatography analysis of the lipophilic pigments showed that the upper region of most of the Antarctic mats was enriched in sheath pigments (scytonemin) and/or certain carotenoids such as myxoxanthophyll and canthaxanthin. Most of the chlorophyll a (Chla), as well as phycocyanin, β-carotene and echinenone, was located in the lower strata of the mat profiles. In many of these communities most of the photosynthetic biomass occurred in a ‘deep Chla maximum’ that was well protected from short-wavelength radiation by the surface layer of light-screening pigments.  相似文献   

13.
H. Züllig 《Hydrobiologia》1986,143(1):315-319
Previous examination of drilling cores showed that the majority of the carotenes and carotenoids originally present in the various planktonic organisms and phototrophic bacteria are preserved in sediments. The indicator pigments for algae phyla are: Lutein for Chlorophyta, Myxoxanthophylls and their derivatives for Cyanophyta, Fucoxanthin for Chrysophyta, and Alloxanthin for Cryptophyta.The pigments in the deepest sediment sample (late glacial time, clay, 12.83 m) consists primarily of Alloxanthin, secondly of Lutein and -carotene and thirdly of traces of Okenone, Speroidenone and other such bacterial carotenoids. The first plankton organisms were thus Cryptophyta and some Chlorophyta. The presence of the phototrophic bacteria pigments indicates that at the time of sediment formation, anaerobic conditions prevailed at the lake bottom.The Holocene era commences at a depth of 8.55 m and is characterized by the first occurrence of Myxoxanthophyll and Echinenone from Cyanophyta, as well as by a rapid increase of -carotene, Lutein and Alloxanthin. The pronounced occurrence of Oscillatoria rubescens (blood of the Burgundies), characterized by Oscillaxanthin at 8.21 m must be considered for Swiss lakes as a very surprising discovery.The intensive plankton production again lead to stringent anaerobic conditions. Predominant among phototrophic bacteria pigments were Okenone, Spheroidene and Rhodopin.  相似文献   

14.
15.
Carotenoids play critical roles in both light harvesting and energy dissipation for the protection of photosynthetic structures. However, limited research is available on the impact of irradiance on the production of secondary plant compounds, such as carotenoid pigments. Kale ( Brassica oleracea L.) and spinach ( Spinacia oleracea L.) are two leafy vegetables high in lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different irradiance levels on tissue biomass, elemental nutrient concentrations, and lutein β-carotene and chlorophyll (chl) pigment accumulation in the leaves of kale and spinach. 'Winterbor' kale and 'Melody' spinach were grown in nutrient solution culture in growth chambers at average irradiance levels of 125, 200, 335, 460, and 620 μmol m−2 s−1. Highest tissue lutein β-carotene and chls occurred at 335 μmol m−2 s−1 for kale, and 200 μmol m−2 s−1 for spinach. The accumulations of lutein and β-carotene were significantly different among irradiance levels for kale, but were not significantly different for spinach. However, lutein and β-carotene accumulation was significant for spinach when computed on a dry mass basis. Identifying effects of irradiance on carotenoid accumulation in kale and spinach is important information for growers producing these crops for dry capsule supplements and fresh markets.  相似文献   

16.
Lakes are among the most productive and biodiverse ecosystems in Antarctica, and they behave as important indicators of local climatic and environmental changes. However, few studies have focused on the local drivers of short-term temporal variability in lacustrine biogeochemical variables. In the present study, measurements of physical, chemical, biological and optical characteristics of the shallow endorheic Lake 14 at Edmonson Point (74.33° S, 165.13° E) were made over the ice-free period in December 2006. A significant variation in most variables was observed. Possible drivers for these changes were the loss of the ice cover, an increase in solar irradiance, a change in photosynthetic activity and the evaporative loss of water. By removing relative changes due to evaporative losses, new insights were gained into the driving factors controlling the biogeochemistry and primary productivity in the shallow Antarctic lake. In particular, a decrease in phytoplankton biomass was observed and was probably linked to photoinhibition as revealed by an increase in photoprotective pigments. The absorbance by dissolved organic matter, when weighted with respect to evaporative loss, shows an overall reduction in humic-like absorption, most likely linked to photodegradation.  相似文献   

17.
Ongoing global warming is affecting the polar regions at a faster pace than in many other lower latitude environments. Based on the idea that the changes at the sea surface leave a signal in the sedimentary record, we analysed the total hydrolysable amino acid (THAA) and enzymatically hydrolysable amino acid (EHAA) contents in sediments off the coast of the eastern Antarctic Peninsula during the decade following the collapse of sections A and B of the Larsen ice shelf to check their utility as biomarkers of this event. Two organic matter lability indexes (the EHAA-to-THAA ratio and the Dauwe degradation index) were also calculated to assess the quality of the organic matter in the sediment column. The THAA and EHAA concentrations in the upper 5 mm varied between ~1 and ~10 nmol mg?1 DW?1, corresponding to an oligotrophic environment, whereas the quality of the organic matter as indicated by the lability indexes was relatively high in the upper sediment column (<2 cm deep). The amino acid profiles and indexes in the sediment column were compared to the pigment profiles and indexes published in previous studies for the same stations. The results suggest that in the sediment column, pigments track more accurately than amino acids the pelagic organic matter supply to the seabed after the collapse of the Larsen ice shelf.  相似文献   

18.
In this study, the feasibility and applicability of marine algal biomass Saccharina (Laminaria) japonica as a sole substrate for the production of pigments by Talaromyces amestolkiae GT11 in submerged fermentation was evaluated. Results indicated that the fungus T. amestolkiae GT11 produced the highest amount of extracellular yellow (444.83 ± 22) and red (200.94 ± 12), and intracellular yellow (362.28 ± 34) and red (193.87 ± 10) pigments, utilizing 1% (w/v) of S. japonica powder at an initial pH of 5 and 30°C, as compared to other physiochemical parameters tested. The pH and thermostability analysis results demonstrated that even after 5 h of incubation the pigment was found to be highly stable at pH 6 and 40 ~ 60°C with 98% and 90.56 ~ 84.69% of residual absorbance, respectively. Apart from the application of pigment as a natural colorant instead of synthetic one in biotechnology industry, the fermented substrate itself can be exploited as food and feed with enhanced nutrient content, improved protein quality and fiber digestibility, etc. However, further studies concerning the safety and functional properties of the pigment and fermented substrate are required. Furthermore, this study provides the evidences about the biological method of making easily fermentable biomass for biorefiners or other metabolite production.  相似文献   

19.
Phospholipid analyses were performed on water column particulate and sediment samples from Ace Lake, a meromictic lake in the Vestfold Hills, Antarctica, to estimate the viable microbial biomass and community structure in the lake. In the water column, methanogenic bacterial phospholipids were present below 17 m in depth at concentrations which converted to a biomass of between 1 and 7×108 cells/liter. Methanogenic biomass in the sediment ranged from 17.7×109 cells/g dry weight of sediment at the surface to 0.1×109 cells/g dry weight at 2 m in depth. This relatively high methanogenic biomass implies that current microbial degradation of organic carbon in Ace Lake sediments may occur at extremely slow rates. Total microbial biomass increased from 4.4×108 cells/ liter at 2 m in depth to 19.4×108 cells/liter at 23 m, near the bottom of the water column. Total nonarchaebacterial biomass decreased from 4.2 ×109 cells/g dry weight in the surface sediment (1/4 the biomass of methanogens) to 0.06×108 cells/g dry weight at 2 m in depth in the sediment. Phospholipid fatty acid profiles showed that microeukaryotes were the major microbial group present in the oxylimnion of the lake, while bacteria dominated the lower, anoxic zone. Sulfate-reducing bacteria (SRB) comprised 25% of the microbial population at 23 m in depth in the water column particulates and were present in the surface sediment but to a lesser extent. Biomass estimates and community structure of the Ace Lake eco-system are discussed in relation to previously measured metabolic rates for this and other antarctic and temperate ecosystems. This is the first instance, to our knowledge, in which the viable biomass of methanogenic and SRB have been estimated for an antarctic microbial community.  相似文献   

20.
Measurement and interpretation of sedimentary pigments   总被引:22,自引:0,他引:22  
SUMMARY.
  • 1 The factors that control the concentrations of pigments in lake sediments are examined using data from (i) transects across lake basins, (ii) surface samples from logographic and atrophic lakes, and (iii) two 210Pb-dated short cores. Methods for the rapid non-chromatographic analysis of percent native chlorophyll and the blue-green algal pigments oscillaxanthin and myxoxanthophyll are described.
  • 2 The concentrations of chlorophyll derivatives, total arytenoids, oscillaxanthin and myxoxanthophyll, and percent native chlorophyll, are higher under conditions along the transects favorable for preservation. Chlorophyll degrades at about the same rate as total carotenoids, and oscillaxanthin degrades at about the same rate as myxoxanthophyll. Therefore, both the ratio of chlorophyll to arytenoids (CD/TC) and the ratio of oscillaxanthin to myxoxanthophyll (OSC/MYX) are mostly determined by the quality of autochthonous production rather than by preservation conditions.
  • 3 CD/TC values are higher in logographic lakes than in atrophic lakes, apparently as a result of differences in production of the two pigment types. Calculations show that CD/TC shifts in these two cores cannot be a record of the allochthonous-autochthonous Baltic in the systems. Instead, the CD/TC values shift with large changes in the kinds of plants dominating primary production.
  • 4 The stratigraphy of percent native chlorophyll appears to record the hypohmnetic oxygen concentrations at the time of deposition.
  • 5 No obvious reason exists why a eutrophic lake should produce more pigment per gram organic matter than should an oligotrophic lake. However, several correlated mechanisms tend to produce higher sedimentary pigment concentrations in eutrophic lakes. Most of these mechanisms, such as hypolimnetic oxygen consumption, indirectly translate greater primary productivity into greater sedimentary pigment concentration. Therefore, pigment concentrations are sometimes misleading, and pigment accumulation rate may be a better indicator of past primary production.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号