首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.  相似文献   

2.
Ferman S  Karni A 《PloS one》2010,5(10):e13648
A leading notion is that language skill acquisition declines between childhood and adulthood. While several lines of evidence indicate that declarative ("what", explicit) memory undergoes maturation, it is commonly assumed that procedural ("how-to", implicit) memory, in children, is well established. The language superiority of children has been ascribed to the childhood reliance on implicit learning. Here we show that when 8-year-olds, 12-year-olds and young adults were provided with an equivalent multi-session training experience in producing and judging an artificial morphological rule (AMR), adults were superior to children of both age groups and the 8-year-olds were the poorest learners in all task parameters including in those that were clearly implicit. The AMR consisted of phonological transformations of verbs expressing a semantic distinction: whether the preceding noun was animate or inanimate. No explicit instruction of the AMR was provided. The 8-year-olds, unlike most adults and 12-year-olds, failed to explicitly uncover the semantic aspect of the AMR and subsequently to generalize it accurately to novel items. However, all participants learned to apply the AMR to repeated items and to generalize its phonological patterns to novel items, attaining accurate and fluent production, and exhibiting key characteristics of procedural memory. Nevertheless, adults showed a clear advantage in learning implicit task aspects, and in their long-term retention. Thus, our findings support the notion of age-dependent maturation in the establishment of declarative but also of procedural memory in a complex language task. In line with recent reports of no childhood advantage in non-linguistic skill learning, we propose that under some learning conditions adults can effectively express their language skill acquisition potential. Altogether, the maturational effects in the acquisition of an implicit AMR do not support a simple notion of a language skill learning advantage in children.  相似文献   

3.
Practice on a procedural task involves within-session learning and between-session consolidation of learning, with the latter requiring a minimum of about four hours to evolve due to involvement of slower cellular processes. Learning to attend to threats is vital for survival and thus may involve faster memory consolidation than simple procedural learning. Here, we tested whether attention to threat modulates the time-course and magnitude of learning and memory consolidation effects associated with skill practice. All participants (N = 90) practiced in two sessions on a dot-probe task featuring pairs of neutral and angry faces followed by target probes which were to be discriminated as rapidly as possible. In the attend-threat training condition, targets always appeared at the angry face location, forming an association between threat and target location; target location was unrelated to valence in a control training condition. Within each attention training condition, duration of the between-session rest interval was varied to establish the time-course for emergence of consolidation effects. During the first practice session, we observed robust improvement in task performance (online, within-session gains), followed by saturation of learning. Both training conditions exhibited similar overall learning capacities, but performance in the attend-threat condition was characterized by a faster learning rate relative to control. Consistent with the memory consolidation hypothesis, between-session performance gains (delayed gains) were observed only following a rest interval. However, rest intervals of 1 and 24 hours yielded similar delayed gains, suggesting accelerated consolidation processes. Moreover, attend-threat training resulted in greater delayed gains compared to the control condition. Auxiliary analyses revealed that enhanced performance was retained over several months, and that training to attend to neutral faces resulted in effects similar to control. These results provide a novel demonstration of how attention to threat can accelerate and enhance memory consolidation effects associated with skill acquisition.  相似文献   

4.
Sleep after learning has been shown to foster the consolidation of new memories. However, fundamental questions on the best timing of learning before night-time sleep persist. We tested the hypothesis that learning directly prior to night-time sleep compared to 7.5 hrs prior to night-time sleep provides better conditions for the consolidation of declarative and procedural memories. Fifty healthy female adolescents (aged 16-17 years) were trained on a declarative word-pair and a procedural finger-tapping task at 3 pm (afternoon group, n = 25) or at 9 pm (evening group, n = 25), followed by a sleep laboratory night. Retrieval was assessed 24 hours and 7 days after initial training. Subjects trained in the afternoon showed a significantly elevated retention rate of word-pairs compared to subjects trained in the evening after 24 hours, but not after 7 days. In contrast, off-line gains in finger-tapping performance were significantly higher in subjects trained in the evening compared to those trained in the afternoon after both retention intervals. The observed enhanced consolidation of procedural memories after training in the evening fits to current models of sleep-related memory consolidation. In contrast, the higher retention of declarative memories after encoding in the afternoon is surprising, appeared to be less robust and needs further investigation.  相似文献   

5.
Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories.  相似文献   

6.
The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task) and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI) and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.  相似文献   

7.
In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements. The relative effects of reward and punishment on consolidation and long-term retention, critical behavioral stages for successful learning, are not known. Here, we investigated the effects of reward and punishment on these different stages of human motor skill learning. We studied healthy subjects who trained on a motor task under rewarded, punished, or neutral control conditions. Performance was tested before and immediately, 6 hr, 24 hr, and 30 days after training in the absence of reward or punishment. Performance improvements immediately after training were comparable in the three groups. At 6 hr, the rewarded group maintained performance gains, whereas the other two groups experienced significant forgetting. At 24 hr, the reward group showed significant offline (posttraining) improvements, whereas the other two groups did not. At 30 days, the rewarded group retained the gains identified at 24 hr, whereas the other two groups experienced significant forgetting. We conclude that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time.  相似文献   

8.
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.  相似文献   

9.
Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior.  相似文献   

10.
Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods.  相似文献   

11.
Motor skill memory is first encoded online in a fragile form during practice and then converted into a stable form by offline consolidation, which is the behavioral stage critical for successful learning. Praise, a social reward, is thought to boost motor skill learning by increasing motivation, which leads to increased practice. However, the effect of praise on consolidation is unknown. Here, we tested the hypothesis that praise following motor training directly facilitates skill consolidation. Forty-eight healthy participants were trained on a sequential finger-tapping task. Immediately after training, participants were divided into three groups according to whether they received praise for their own training performance, praise for another participant''s performance, or no praise. Participants who received praise for their own performance showed a significantly higher rate of offline improvement relative to other participants when performing a surprise recall test of the learned sequence. On the other hand, the average performance of the novel sequence and randomly-ordered tapping did not differ between the three experimental groups. These results are the first to indicate that praise-related improvements in motor skill memory are not due to a feedback-incentive mechanism, but instead involve direct effects on the offline consolidation process.  相似文献   

12.
The contribution of acetylcholine (ACh) to memory processing is well documented, but it has been proposed that it is not necessary for memory consolidation after an enhanced learning experience. It has been suggested that serotonin (5-HT) interacts with ACh during memory consolidation, although the nature of this interaction is unknown in the case of strong learning. As an initial approach to the study of these interactions, we determined whether training of inhibitory avoidance using relatively high aversive stimulation protects against the typical retention deficits produced by pre-training administration of the 5-HT releaser p-chloroamphetamine (PCA). Rats were trained after intraperitoneal administration of PCA or isotonic saline, using 2.0, 2.5, 3.0 or 3.5 mA and retention of the task was measured 24 h later. A significant amnesic state was observed only in the PCA groups that had been trained with the two lower intensities. These results indicate that 5-HT systems behave similarly to ACh systems, in the sense that the amnesic effect produced by interference with their physiological activity may be cancelled when animals are submitted to an intense learning situation.  相似文献   

13.
Motor skills, once learned, are often retained over a long period of time. However, such learning first undergoes a period of consolidation after practice. During this time, the motor memory is susceptible to being disrupted by the performance of another motor-learning task. Recently, it was shown that repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex could disrupt the retention of a newly learned ballistic task in which subjects had to oppose their index finger and thumb as rapidly as possible. Here we investigate whether the motor cortex is similarly involved during the consolidation that follows learning novel dynamics. We applied rTMS to primary motor cortex shortly after subjects had either learned to compensate for a dynamic force field applied to their index finger or learned a ballistic finger abduction task. rTMS severely degraded the retention of the learning for the ballistic task but had no effect on retention of the dynamic force-field learning. This suggests that, unlike learning of simple ballistic skills, learning of dynamics may be stored in a more distributed manner, possibly outside the primary motor cortex.  相似文献   

14.

Introduction

There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone.

Materials and Methods

Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy.

Results

There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246).

Discussion

An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning.  相似文献   

15.
Procedural learning is a form of memory where people implicitly acquire a skill through repeated practice. People with Parkinson’s disease (PD) have been found to acquire motor adaptation, a form of motor procedural learning, similarly to healthy older adults but they have deficits in long-term retention. A similar pattern of normal learning on initial exposure with a deficit in retention seen on subsequent days has also been seen in mirror-reading, a form of non-motor procedural learning. It is a well-studied fact that disrupting sleep will impair the consolidation of procedural memories. Given the prevalence of sleep disturbances in PD, the lack of retention on following days seen in these studies could simply be a side effect of this well-known symptom of PD. Because of this, we wondered whether people with PD would present with deficits in the short-term retention of a non-motor procedural learning task, when the test of retention was done the same day as the initial exposure. The aim of the present study was then to investigate acquisition and retention in the immediate short term of cognitive procedural learning using the mirror-reading task in people with PD. This task involved two conditions: one where triads of mirror-inverted words were always new that allowed assessing the learning of mirror-reading skill and another one where some of the triads were presented repeatedly during the experiment that allowed assessing the word-specific learning. People with PD both ON and OFF their normal medication were compared to healthy older adults and young adults. Participants were re-tested 50 minutes break after initial exposure to probe for short-term retention. The results of this study show that all groups of participants acquired and retained the two skills (mirror-reading and word-specific) similarly. These results suggest that neither healthy ageing nor the degeneration within the basal ganglia that occurs in PD does affect the mechanisms that underpin the acquisition of these new non-motor procedural learning skills and their short-term memories.  相似文献   

16.
It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.  相似文献   

17.
Sleep supports the consolidation of declarative memory in children and adults. However, it is unclear whether sleep improves odor memory in children as well as adults. Thirty healthy children (mean age of 10.6, ranging from 8–12 yrs.) and 30 healthy adults (mean age of 25.4, ranging from 20–30 yrs.) participated in an incidental odor recognition paradigm. While learning of 10 target odorants took place in the evening and retrieval (10 target and 10 distractor odorants) the next morning in the sleep groups (adults: n = 15, children: n = 15), the time schedule was vice versa in the wake groups (n = 15 each). During encoding, adults rated odors as being more familiar. After the retention interval, adult participants of the sleep group recognized odors better than adults in the wake group. While children in the wake group showed memory performance comparable to the adult wake group, the children sleep group performed worse than adult and children wake groups. Correlations between memory performance and familiarity ratings during encoding indicate that pre-experiences might be critical in determining whether sleep improves or worsens memory consolidation.  相似文献   

18.
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals.  相似文献   

19.
Lanthanum cations (La 3+) are well known for their inhibitory actions on calcium channels. Prenatal lanthanum exposure may affect the development of embryo and alter the capacity for learning and memory in adults, and the one-trial passive avoidance learning paradigm with day-old chicks is an excellent model to study several mechanisms of memory formation. In the present study, we examined the effects of prenatal lanthanum chloride exposure on memory consolidation using one-trial passive avoidance learning task in day-old chicks. The data suggest that chicks injected with lanthanum chloride (2 mg/kg) daily from E9 to E16 had significantly impaired long-term memory at 120 min after training (p < 0.05) but not the chicks injected with lanthanum chloride (0.1 mg/kg) daily from E9 to E16.  相似文献   

20.

Background

Patients with Parkinson’s disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation.

Objective

To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting.

Methods

Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes.

Results

Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group.

Conclusions

Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号