首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we isolated several inhibitors that block the site-specific recombination reaction mediated by the Tn3-encoded resolvase protein. One class of inhibitors blocks resolvase binding to the recombination (res) sitc, and a second class inhibits synapse formation between resolvase and two directly repeated res sites. In this report, we identify an inhibitor, A20832, that does not inhibit resolvase binding to res, as measured by filter binding, or synapse formation. Inhibition of resolvase-promoted site-specific recombination by A20832 occurs postsynaptically at strand cleavage. DNase I analysis in the presence of A20832 indicates that only site I of res is bound by resolvase.  相似文献   

2.
The Tn3-encoded resolvase protein promotes a site-specific recombination reaction between two directly repeated copies of the recombination site res. Several inhibitors that block this event in vitro have been isolated. In this study four of these inhibitors were tested on various steps in the recombination reaction. Two inhibitors. A9387 and A1062, inhibit resolvase binding to the res site. Further, DNase I footprinting revealed that at certain concentrations of A9387 and A1062, resolvase was preferentially bound to site I of res, the site containing the recombinational crossover point. The two other inhibitors, A20812 and A21960, do not affect resolvase binding and bending of the DNA but inhibit synapse formation between resolvase and two directly repeated res sites.  相似文献   

3.
R R Reed  N D Grindley 《Cell》1981,25(3):721-728
Resolvase, the product of the tnpR gene of the transposable element gamma delta, mediates a site-specific recombination between two copies of the element directly repeated on the same replicon. The resolution site, res, at which resolvase acts lies in the intercistronic region between the tnpA and tnpR genes. We have studied this site-specific recombination in vitro. In the absence of Mg2+, a resolvase-res complex is formed, which contains DNA molecules that have been cleaved at res. Our data suggest that in this complex resolvase is covalently attached to the 5' ends of the cleaved DNA, leaving free 3' hydroxyl groups. DNA cleavage is stimulated by the interaction of two res sites on the same substrate molecule and appears to be an intermediate step in normal res site recombination. We show that the DNA is cut within a region previously identified as containing the crossover point at the palindromic sequence 5'- (see formula in text) to generate 3' extensions of two bases.  相似文献   

4.
The dual functions of resolvase, site-specific recombination and the regulation of its own expression from tnpR, both require the interaction of this protein with the DNA sequence at res, but the specificity of this interaction differs between groups of Tn3-like elements. In this study, DNA fragments that contained res from Tn21 or Tn1721 were subjected to either cleavage by DNase I or methylation by dimethyl sulphate in the presence of the purified resolvase from Tn21 or Tn1721. These experiments showed that each resolvase bound to the same three sites (I, II and III) within res from Tn1721 and to an equivalent series of three sites on Tn21: the differences in the amino acid sequences of the two proteins did not affect their interaction with either DNA. The DNA sequences at each site had some similarities and, in conjunction with data from the related transposon Tn501, a consensus was established. However, the three sites are functionally distinct: site I (tnpR-distal) spans the recombination cross-over point and sites II and III (tnpR-proximal) overlap the promoter of tnpR. The binding sites on these transposons were compared with those in the gamma delta/Tn3 system: the similarities between the two groups of transposons revealed some general features of resolvase-DNA interactions while the differences in fine structure elucidated the specificity of each resolvase.  相似文献   

5.
The carboxyl-terminal domain of gamma delta resolvase binds to each half of the three resolvase binding sites that constitute the recombination site, res. Ethylation inhibition experiments show that the phosphate contacts made by the C-terminal DNA binding domain are similar to those made by intact resolvase, with the exception of a single phosphate at the inside end of each contact region which is contacted solely by the intact resolvase. The DNA binding domain makes essentially identical contacts to all 6 half sites, whereas the intact resolvase makes slightly different contacts to each binding site. Despite its small size, only 43 amino acid residues, the resolvase C-terminal domain interacts with an unusually large segment of DNA. Phosphate contacts extend across an adjacent major and minor groove of DNA and about one third of the circumference around the helix. The minimal binding segment, determined experimentally, is a 12 bp sequence that includes the 9 base pair inverted repeat (common to all half sites), the adjacent 3 base pairs (towards the center of the intact resolvase binding site), and phosphates at both ends.  相似文献   

6.
Tn3 resolvase promotes site-specific recombination between two res sites, each of which has three resolvase dimer-binding sites. Catalysis of DNA-strand cleavage and rejoining occurs at binding site I, but binding sites II and III are required for recombination. We used an in vivo screen to detect resolvase mutants that were active on res sites with binding sites II and III deleted (that is, only site I remaining). Mutations of amino acids Asp102 (D102) or Met103 (M103) were sufficient to permit catalysis of recombination between site I and a full res, but not between two copies of site I. A double mutant resolvase, with a D102Y mutation and an additional activating mutation at Glu124 (E124Q), recombined substrates containing only two copies of site I, in vivo and in vitro. In these novel site Ixsite I reactions, product topology is no longer restricted to the normal simple catenane, indicating synapsis by random collision. Furthermore, the mutants have lost the normal specificity for directly repeated sites and supercoiled substrates; that is, they promote recombination between pairs of res sites in linear molecules, or in inverted repeat in a supercoiled molecule, or in separate molecules.  相似文献   

7.
Synapsis and catalysis by activated Tn3 resolvase mutants   总被引:1,自引:0,他引:1       下载免费PDF全文
The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I × site I recombination promoted by these variants can be as fast as res × res recombination promoted by wild-type resolvase. Activated variants have reduced topological selectivity and no longer require the 2–3′ interface between subunits that is essential for wild-type resolvase-mediated recombination. They also promote formation of a stable synapse comprising a resolvase tetramer and two copies of site I. Cleavage of the DNA strands by the activated mutants is slow relative to the rate of synapsis. Stable resolvase tetramers were not detected in the absence of DNA or bound to a single site I. Our results lead us to conclude that the synapse is assembled by sequential binding of resolvase monomers to site I followed by interaction of two site I-dimer complexes. We discuss the implications of our results for the mechanisms of synapsis and regulation in recombination by wild-type resolvase.  相似文献   

8.
Resolvases from Tn3-like transposons catalyse site-specific recombination at res sites. Each res site has 3 binding sites for resolvase, I, II, and III. The res sites in Tn3 and Tn21 have similar structures at I and II but they differ at III. Mutagenesis of the Tn21 res site showed that sub-site III is essential for recombination though the sequences in III that are recognized by Tn21 resolvase are positioned differently from the equivalent sequences in the Tn3 site. The deletion of III caused a 1,000-fold drop in the rate of recombination. But other mutations at III, changing 3 or 4 consecutive base pairs, caused only 1.5- to 4-fold decreases in rate, even when the mutations were in target sequences for this helix-turn-helix protein. The reason why Tn21 resolvase has similar activities at a number of different DNA sequences may be due to the multiplicity of protein-protein and protein-DNA interactions in its recombinogenic complex. This lack of precision may be a general feature of nucleoprotein complexes.  相似文献   

9.
Catalysis of DNA recombination by Tn3 resolvase is conditional on prior formation of a synapse, comprising 12 resolvase subunits and two recombination sites (res). Each res binds a resolvase dimer at site I, where strand exchange takes place, and additional dimers at two adjacent 'accessory' binding sites II and III. 'Hyperactive' resolvase mutants, that catalyse strand exchange at site I without accessory sites, were selected in E. coli. Some single mutants can resolve a res x site I plasmid (that is, with one res and one site I), but two or more activating mutations are necessary for efficient resolution of a site I x site I plasmid. Site I x site I resolution by hyperactive mutants can be further stimulated by mutations at the crystallographic 2-3' interface that abolish activity of wild-type resolvase. Activating mutations may allow regulatory mechanisms of the wild-type system to be bypassed, by stabilizing or destabilizing interfaces within and between subunits in the synapse. The positions and characteristics of the mutations support a mechanism for strand exchange by serine recombinases in which the DNA is on the outside of a recombinase tetramer, and the tertiary/quaternary structure of the tetramer is reconfigured.  相似文献   

10.
To characterize the residues that participate in the catalysis of DNA cleavage and rejoining by the site-specific recombinase Tn3 resolvase, we mutated conserved polar or charged residues in the catalytic domain of an activated resolvase variant. We analysed the effects of mutations at 14 residues on proficiency in binding to the recombination site (‘site I’), formation of a synaptic complex between two site Is, DNA cleavage and recombination. Mutations of Y6, R8, S10, D36, R68 and R71 resulted in greatly reduced cleavage and recombination activity, suggesting crucial roles of these six residues in catalysis, whereas mutations of the other residues had less dramatic effects. No mutations strongly inhibited binding of resolvase to site I, but several caused conspicuous changes in the yield or stability of the synapse of two site Is observed by non-denaturing gel electrophoresis. The involvement of some residues in both synapsis and catalysis suggests that they contribute to a regulatory mechanism, in which engagement of catalytic residues with the substrate is coupled to correct assembly of the synapse.  相似文献   

11.
Helical phasing between DNA bends and the determination of bend direction.   总被引:11,自引:1,他引:10  
The presence and location of bends in DNA can be inferred from the anomalous mobility of DNA fragments or protein-DNA complexes during electrophoresis in polyacrylamide gels. Direction of bending is not so easily determined. We show here that a protein-induced bend, when linked to a protein-independent DNA bend by a segment of variable length, exhibits an electrophoretic mobility that varies in a sinusoidal manner with the length of the linker. Mobility minima occur once for each addition to the linker of one helical turn of DNA. Since minima should occur when two bends reinforce one another, the direction of one bend relative to the other can be determined from the distances between the two centers of bending at which minima occur. Our results strongly support the idea that the A5-6 tracts in kinetoplast DNA bend towards the minor groove while the bend at the recombination site of the gamma delta resolvase (binding site I of the gamma delta res site) bends towards the major groove.  相似文献   

12.
Before cleaving DNA substrates with two recognition sites, the Cfr10I, NgoMIV, NaeI and SfiI restriction endonucleases bridge the two sites through 3D space, looping out the intervening DNA. To characterise their looping interactions, the enzymes were added to plasmids with two recognition sites interspersed with two res sites for site-specific recombination by Tn21 resolvase, in buffers that contained either EDTA or CaCl2 so as to preclude DNA cleavage by the endonuclease; the extent to which the res sites were sequestered into separate loops was evaluated from the degree of inhibition of resolvase. With Cfr10I, a looped complex was detected in the presence but not in the absence of Ca(2+); it had a lifetime of about 90 seconds. Neither NgoMIV nor NaeI gave looped complexes of sufficient stability to be detected by this method. In contrast, SfiI with Ca(2+) produced a looped complex that survived for more than seven hours, whereas its looping interaction in EDTA lasts for about four minutes. When resolvase was added to a SfiI binding reaction in EDTA followed immediately by CaCl2, the looped DNA was blocked from recombination while the unlooped DNA underwent recombination. By measuring the distribution between looped and unlooped DNA at various SfiI concentrations, and by fitting the data to a model for DNA binding by a tetrameric protein to two sites in cis, an equilibrium constant for the looping interaction was determined. The equilibrium constant was essentially independent of the length of DNA between the SfiI sites.  相似文献   

13.
Catalytic residues of gamma delta resolvase act in cis.   总被引:3,自引:0,他引:3       下载免费PDF全文
M R Boocock  X Zhu    N D Grindley 《The EMBO journal》1995,14(20):5129-5140
The resolvase protein of the gamma delta transposon is a site-specific recombinase that acts by a concerted break-and-join mechanism. To analyse the role of individual resolvase subunits in DNA strand cleavage, we have directed the binding of catalytic mutants to specific recombination crossover sites or half-sites. Our results demonstrate that the resolvase subunit bound at the half-site proximal to each scissile phosphodiester bond provides the Ser10 nucleophile and Arg8, Arg68 and Arg71 residues essential for cleavage and covalent attachment to the DNA. Several other residues near the presumptive active site are also shown to act in cis. Double-strand cleavage at one crossover site can proceed independently of cleavage at the other site, although interactions between the resolvase dimers bound at the two crossover sites remain essential. An appropriately oriented heterodimer of active and inactive protomers can in most cases mediate either a 'top' or 'bottom' single-strand cleavage, suggesting that there is no obligatory order of strand cleavages. Top-strand cleavage is associated with the topoisomerase I activity of resolvase, suggesting that a functional asymmetry may be imposed on the crossover site by the structure of the active synapse.  相似文献   

14.
Contacts between gamma delta resolvase and the gamma delta res site.   总被引:11,自引:5,他引:6       下载免费PDF全文
We have investigated the interaction between resolvase and the res site of the transposon gamma delta by methylation and ethylation interference experiments. We have examined the effect of these DNA modifications both on binding and resolution in vitro. Major groove methylations within a 9 bp sequence that borders each site inhibit binding of resolvase to that site. Ethylation of certain phosphates within, and adjacent to, this border sequence inhibits binding. Together, these interference points define a contact region, present at all three res sites. In vitro resolution is inhibited only by modifications within site I. Inhibition of resolution by methylation of adenines at the center of site I suggests that minor groove contacts near the crossover may be required for resolution activity.  相似文献   

15.
The Tn3 resolvase requires that the two recombination (res) sites be aligned as direct repeats on the same molecule for efficient recombination to occur. To test whether resolvase must contact the DNA between res sites as predicted by tracking models, we have determined the sensitivity of recombination to protein diffusion blockades. Recombination between two res sites is unaffected either by lac repressor or bacteriophage T7 RNA polymerase being bound between them. Yet recombination is inhibited by lac repressor if the res site is bounded by a lac operator on both sides. We demonstrate that lac repressor will bind to more than one DNA site under the conditions used to assay recombination. This result suggests that lac repressor can inhibit resolvase by forming a DNA loop that isolates a res site topologically. These results do not support a tracking model for resolvase but suggest that the structure and topology of the DNA substrate is important in the formation of a synapse between res sites.  相似文献   

16.
Geometric arrangements of Tn3 resolvase sites   总被引:8,自引:0,他引:8  
Site-specific recombination by Tn3 resolvase normally occurs in vitro and in vivo only between directly repeated res sites on the same supercoiled DNA molecule. However, with multiply interlinked catenane substrates consisting of two DNA rings each containing a single res site, resolvase efficiently carried out intermolecular recombination. The topology of the knots produced by several rounds of this reaction proves that the DNA within the synaptic intermediate is coiled in an interwound (plectonemic) fashion rather than wrapped solenoidally around resolvase as in previously characterized supercoiled DNA-protein complexes. The synaptic intermediate can contain equivalently supercoil, catenane, or knot crossings as long as the res sites have a right-handed coiling and a particular relative orientation. The structure of the product knots and catenanes also shows the path the DNA takes during strand exchange. Intermolecular recombination within multiply linked catenanes required negative supercoiling, as does the standard intramolecular reaction.  相似文献   

17.
I Canosa  F Rojo    J C Alonso 《Nucleic acids research》1996,24(14):2712-2717
The beta recombinase from the broad host range Grampositive plasmid pSM19035 catalyzes intramolecular site-specific recombination between two directly or inversely oriented recombination sites in the presence of a chromatin-associated protein (Hbsu). The recombination site had been localized to a 447 bp DNA segment from pSM19035. This segment includes a 90 bp region that contains two adjacent binding sites (I and II) for beta protein dimers. Using in vitro recombination assays, we show that this 90 bp region is necessary and sufficient for beta protein-mediated recombination; this defines the six site as the region required for beta protein binding. The point of crossing over has been localized to the center of site I. Hbsu has a strong binding affinity for an unknown site located within the 447 bp segment containing the six site. We discuss the possibility that Hbsu recognizes an altered DNA structure, rather than a specific sequence, generated in the synaptic complex.  相似文献   

18.
19.
In order to investigate the functions of the parts of the Tn 3 recombination site res, we created hybrid recombination sites by placing the loxP site for Cre recombinase adjacent to the "accessory" resolvase-binding sites II and III of res. The efficiency and product topology of in vitro recombination by Cre between two of these hybrid sites were affected by the addition of Tn 3 resolvase. The effects of resolvase addition were dependent on the relative orientation and spacing of the elements of the hybrid sites. Substrates with sites II and III of res close to loxP gave specific catenated or knotted products (four-noded catenane, three-noded knot) when resolvase and Cre were added together. The product topological complexity increased when the length of the spacer DNA segment between loxP and res site II was increased. Similar resolvase-induced effects on Cre recombination product topology were observed in reactions of substrates with loxP sites adjacent to full res sites. The results demonstrate that the res accessory sites are sufficient to impose topological selectivity on recombination, and imply that intertwining of two sets of accessory sites defines the simple catenane product topology in normal resolvase-mediated recombination. They are also consistent with current models for the mechanism of catalysis by Cre.  相似文献   

20.
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号