首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier study, we experimentally mimicked the effects of mechanical interaction between different regions of the ventricular wall by allowing pairs of independently maintained cardiac muscle fibers to interact mechanically in series or in parallel. This simple physiological model of heterogeneous myocardium, which has been termed "duplex," has provided new insight into basic effects of cardiac electromechanical heterogeneity. Here, we present a novel "hybrid duplex," where one of the elements is an isolated cardiac muscle and the other a "virtual cardiac muscle." The virtual muscle is represented by a computational model of cardiomyocyte electromechanical activity. We present in detail the computer-based digital control system that governs the mechanical interaction between virtual and biological muscle, the software used for data analysis, and working implementations of the model. Advantages of the hybrid duplex method are discussed, and experimental recordings are presented for illustration and as proof of the principle.  相似文献   

2.
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human’s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.  相似文献   

3.
The main complicating factor in structure-based drug design is receptor rearrangement upon ligand binding (induced fit). It is the induced fit that complicates cross-docking of ligands from different ligand-receptor complexes. Previous studies have shown the necessity to include protein flexibility in ligand docking and virtual screening. Very few docking methods have been developed to predict the induced fit reliably and, at the same time, to improve on discriminating between binders and non-binders in the virtual screening process.We present an algorithm called the ICM-flexible receptor docking algorithm (IFREDA) to account for protein flexibility in virtual screening. By docking flexible ligands to a flexible receptor, IFREDA generates a discrete set of receptor conformations, which are then used to perform flexible ligand-rigid receptor docking and scoring. This is followed by a merging and shrinking step, where the results of the multiple virtual screenings are condensed to improve the enrichment factor. In the IFREDA approach, both side-chain rearrangements and essential backbone movements are taken into consideration, thus sampling adequately the conformational space of the receptor, even in cases of large loop movements.As a preliminary step, to show the importance of incorporating protein flexibility in ligand docking and virtual screening, and to validate the merging and shrinking procedure, we compiled an extensive small-scale virtual screening benchmark of 33 crystal structures of four different protein kinases sub-families (cAPK, CDK-2, P38 and LCK), where we obtained an enrichment factor fold-increase of 1.85±0.65 using two or three multiple experimental conformations. IFREDA was used in eight protein kinase complexes and was able to find the correct ligand conformation and discriminate the correct conformations from the “misdocked” conformations solely on the basis of energy calculation. Five of the generated structures were used in the small-scale virtual screening stage and, by merging and shrinking the results with those of the original structure, we show an enrichment factor fold increase of 1.89±0.60, comparable to that obtained using multiple experimental conformations.Our cross-docking tests on the protein kinase benchmark underscore the necessity of incorporating protein flexibility in both ligand docking and virtual screening. The methodology presented here will be extremely useful in cases where few or no experimental structures of complexes are available, while some binders are known.  相似文献   

4.
Echolocating bats have to assign the received echoes to the correct call that generated them. Failing to do so will result in the perception of virtual targets that are positioned where there is no actual target. The assignment of echoes to the emitted calls can be ambiguous especially if the pulse intervals between calls are short and kept constant. Here, we present first evidence that greater mouse-eared bats deal with ambiguity by changing the pulse interval more often, in particular by reducing the number of calls in the terminal group before landing. This strategy separates virtual targets from real ones according to their change in position. Real targets will always remain in a constant position, and virtual targets will jitter back and forth according to the change in the time interval.  相似文献   

5.
The study of object manipulation has been largely confined to discrete tasks, where accuracy, mechanical effort, or smoothness were examined to explain subjects'' preferred movements. This study investigated a rhythmic manipulation task, which involved continuous interaction with a nonlinear object that led to unpredictable object behavior. Using a simplified virtual version of the task of carrying a cup of coffee, we studied how this unpredictable object behavior affected the selected strategies. The experiment was conducted in a virtual set-up, where subjects moved a cup with a ball inside, modeled by cart-and-pendulum dynamics. Inverse dynamics calculations of the system showed that performing the task with different amplitudes and relative phases required different force profiles and rendered the object''s dynamics with different degrees of predictability (quantified by Mutual Information between the applied force and the cup kinematics and its sensitivity). Subjects (n = 8) oscillated the virtual cup between two targets via a robotic manipulandum, paced by a metronome at 1 Hz for 50 trials, each lasting 45 s. They were free to choose their movement amplitude and relative phase between the ball and cup. Experimental results showed that subjects increased their movement amplitudes, which rendered the interactions with the object more predictable and with lower sensitivity to the execution variables. These solutions were associated with higher average exerted force and lower object smoothness, contradicting common expectations from studies on discrete object manipulation and unrestrained movements. Instead, the findings showed that humans selected strategies with higher predictability of interaction dynamics. This finding expressed that humans seek movement strategies where force and kinematics synchronize to repeatable patterns that may require less sensorimotor information processing.  相似文献   

6.
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.  相似文献   

7.
The regulation of kinases by scaffolding proteins greatly contributes to the fidelity of signal transduction. In the present study, we explored an interaction between the ubiquitous enzyme PKC (protein kinase C) and the scaffolding protein AKAP7 (A-kinase-anchoring protein 7). Using protein biochemistry and surface plasmon resonance approaches, we demonstrate that both AKAP7γ and AKAP7α are capable of high-affinity interactions with multiple isoenzymes of PKC. Furthermore, this interaction is achieved via multi-site binding on both proteins. FRET (fluorescence resonance energy transfer) analysis using a PKC activity reporter suggests that anchoring of the kinase within AKAP7 complexes enhances the phosphorylation of substrate proteins. Finally, we determined using FRAP (fluorescence recovery after photobleaching) and virtual modelling that AKAP7 restricts the mobility of PKC within cells by tethering it to subcellular compartments. Collectively, the results of the present study suggests that AKAP7 could play an integral role in dictating PKC localization and function in tissues where the two proteins are co-expressed.  相似文献   

8.
This study presents an image-based finite element analysis incorporating histological photomicrographs of heart valve tissues. We report stress fields inside heart valve tissues, where heterogeneously distributed collagen fibres are responsible for transmitting forces into cells. Linear isotropic and anisotropic tissue material property models are incorporated to quantify the overall stress distributions in heart valve tissues. By establishing an effective predictive method with new computational tools and by performing virtual experiments on the heart valve tissue photomicrographs, we clarify how stresses are transferred from matrix to cell. The results clearly reveal the roles of heterogeneously distributed collagen fibres in mitigating stress developments inside heart valve tissues. Moreover, most local peak stresses occur around cell nuclei, suggesting that higher stress may be mediated by cells for biomechanical regulations.  相似文献   

9.
When a rubber hand is placed on a table top in a plausible position as if part of a person’s body, and is stroked synchronously with the person’s corresponding hidden real hand, an illusion of ownership over the rubber hand can occur (Botvinick and Cohen 1998). A similar result has been found with respect to a virtual hand portrayed in a virtual environment, a virtual hand illusion (Slater et al. 2008). The conditions under which these illusions occur have been the subject of considerable study. Here we exploited the flexibility of virtual reality to examine four contributory factors: visuo-tactile synchrony while stroking the virtual and the real arms, body continuity, alignment between the real and virtual arms, and the distance between them. We carried out three experiments on a total of 32 participants where these factors were varied. The results show that the subjective illusion of ownership over the virtual arm and the time to evoke this illusion are highly dependent on synchronous visuo-tactile stimulation and on connectivity of the virtual arm with the rest of the virtual body. The alignment between the real and virtual arms and the distance between these were less important. It was found that proprioceptive drift was not a sensitive measure of the illusion, but was only related to the distance between the real and virtual arms.

Electronic supplementary material

The online version of this article (doi:10.1007/s11571-011-9178-5) contains supplementary material, which is available to authorized users.  相似文献   

10.

Objective

To describe lessons learned from the use of different strategies for recruiting physicians responsible for trauma triage, we summarize recruitment data from four behavioral trials run in the United States between 2010 and 2016.

Results

We ran a series of behavioral trials with the primary objective of understanding the influence of heuristics on physician decision making in trauma triage. Three studies were observational; one tested an intervention. The trials used different methods of recruitment (in-person vs. email), timing of the honorarium (pre-paid vs. conditional on completion), type of honorarium [a $100 gift card (monetary reward) vs. an iPad mini 2 (material incentive)], and study tasks (a vignette-based questionnaire, virtual simulation, and intervention plus virtual simulation). We recruited 989 physicians, asking each to complete a questionnaire or virtual simulation online. Recruitment and response rates were 80% in the study where we approached physicians in person, used a pre-paid material incentive, and required that they complete both an intervention plus a virtual simulation. They were 56% when we recruited physicians via email, used a monetary incentive conditional on completion of the task, and required that they complete a vignette-based questionnaire. Trial registration clinicaltrials.gov; NCT02857348
  相似文献   

11.
In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.  相似文献   

12.
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant''s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups.  相似文献   

13.

Background

Body change illusions have been of great interest in recent years for the understanding of how the brain represents the body. Appropriate multisensory stimulation can induce an illusion of ownership over a rubber or virtual arm, simple types of out-of-the-body experiences, and even ownership with respect to an alternate whole body. Here we use immersive virtual reality to investigate whether the illusion of a dramatic increase in belly size can be induced in males through (a) first person perspective position (b) synchronous visual-motor correlation between real and virtual arm movements, and (c) self-induced synchronous visual-tactile stimulation in the stomach area.

Methodology

Twenty two participants entered into a virtual reality (VR) delivered through a stereo head-tracked wide field-of-view head-mounted display. They saw from a first person perspective a virtual body substituting their own that had an inflated belly. For four minutes they repeatedly prodded their real belly with a rod that had a virtual counterpart that they saw in the VR. There was a synchronous condition where their prodding movements were synchronous with what they felt and saw and an asynchronous condition where this was not the case. The experiment was repeated twice for each participant in counter-balanced order. Responses were measured by questionnaire, and also a comparison of before and after self-estimates of belly size produced by direct visual manipulation of the virtual body seen from the first person perspective.

Conclusions

The results show that first person perspective of a virtual body that substitutes for the own body in virtual reality, together with synchronous multisensory stimulation can temporarily produce changes in body representation towards the larger belly size. This was demonstrated by (a) questionnaire results, (b) the difference between the self-estimated belly size, judged from a first person perspective, after and before the experimental manipulation, and (c) significant positive correlations between these two measures. We discuss this result in the general context of body ownership illusions, and suggest applications including treatment for body size distortion illnesses.  相似文献   

14.
Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and procedures of biological and biochemical experiments, the operation of relevant apparatuses, including the ability to adjust parameters, and the production of results. The programme was used as supplement to mandatory laboratory exercises in two undergraduate courses (i. microbiology and ii. pharmaceutical toxicology) at the University of Southern Denmark. With a theoretical basis in motivational theories, students’ (n = 73) motivation and attitude towards the virtual exercises were evaluated. After completing virtual laboratory cases, the students felt significantly more confident and comfortable operating laboratory equipment, but they did not feel more motivated to engage in virtual laboratories compared to real laboratories. Teachers observed that students were able to participate in discussions at higher levels than in previous years where the programme was not used. The study concludes that virtual laboratories have the potential to improve students’ pre-laboratory preparation.  相似文献   

15.
Many animal species have morphological and cognitive adaptations for fighting with others to gain resources, but it remains unclear how humans make fighting decisions. Non-human animals adaptively calibrate fighting behavior to ecological variables such as resource quantity and resource distribution. Also, many species reduce fighting costs by resolving disputes based on power asymmetries or conventions. Here we show that humans apply an ownership convention in response to the problem of costly fighting. We designed a virtual environment where participants, acting as avatars, could forage and fight for electronic food items (convertible to cash). In two experimental conditions, resources were distributed uniformly or clustered in patches. In the patchy condition, we observed an ownership convention — the avatar who arrives first is more likely to win — but in the uniform condition, where costly fights are rare, the ownership convention is absent.  相似文献   

16.
We predict the virtual trajectories and stiffness ellipses during multijoint arm movements by computer simulations. A two-link manipulator with four single-joint muscles and two double-joint muscles is used as a model of the human arm. Physical parameters of the model are derived from several experimental data. Among them, special emphasis is put on low values of the dynamic hand stiffness recently measured during single joint and multijoint movements. The feedback-error-learning scheme to acquire the inverse dynamics model and the inverse statics model is utilized for this prediction. The virtual trajectories are much more complex than the actual trajectories. This indicates that planning the virtual trajectory is as difficult as solving the inverse dynamics problem for medium and fast movements, and simply falsifies the advocated computational advantage of the virtual trajectory control hypothesis. Thus, we conclude that learning inverse models is essential even in the virtual trajectory control framework. Finally, we propose a new computational model to learn the complicated shape of the virtual trajectories by integrating the virtual trajectory control and the feedback-error-learning scheme.  相似文献   

17.
In this paper, we build up an individual-based model (IBM) that describes the aggregative behavior in phytoplankton. The processes in play at the individual level (an individual=a phytoplankton cell) are: a random dispersal, a displacement due to the net effect of cells present in a suitable neighborhood (spatial interactions) and a branching (cell division and death). The IBM model provides a virtual world where phytoplankton cells appear to form clusters. Using this model, we explore the spatial structure of phytoplankton and present some numerical simulations that help the understanding of the aggregation phenomenon.  相似文献   

18.
The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver’s hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants’ fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals’ estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants’ virtual hands rather than another avatar’s hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.  相似文献   

19.
Together with the rapid development of IT technology, cloud computing has been considered as the next generation’s computing infrastructure. One of the essential part of cloud computing is the virtual machine technology that enables to reduce the data center cost with better resource utilization. Especially, virtual desktop infrastructure (VDI) is receiving explosive attentions from IT markets because of its advantages of easier software management, greater data protection, and lower cost. However, sharing physical resources in VDI to consolidate multiple guest virtual machines (VMs) on a host has a tradeoff that can lead to significant I/O degradation. Optimizing I/O virtualization overhead is a challenging task because it needs to scrutinize multiple software layers between guest VMs and host where those VMs are executing. In this paper, we present a hypervisor-level cache, called hyperCache, which is possible to provide a shortcut in KVM/QEMU. It intercepts I/O requests in the hypervisor and analyses their I/O access patterns to select data retaining high access frequency. Also, it has a capability of maintaining the appropriate cache memory size by utilizing the cache block map. Our experimental results demonstrate that our method improves I/O bandwidth by up to 4.7x over the existing QEMU.  相似文献   

20.
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a "virtual population" from which "virtual individuals" can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the "virtual individuals" that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号