首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function.  相似文献   

2.
For most patients with type I diabetes, insulin therapy and glucose monitoring are sufficient to maintain glycemic control. However, hypoglycemia is a potentially lethal side effect of insulin treatment in patients who are glycemically labile or have hypoglycemia-associated autonomic failure [1]. For those patients, an alternative therapy is beta cell replacement via pancreas or islet transplantation. Pancreas transplants using cadaveric donor organs reduce insulin dependence but carry risks involved in major surgery and chronic immunosuppression. Islet transplantation, in which islets are isolated from donor pancreases and intravenously infused, require no surgery and can utilize islets isolated from pancreases unsuitable for whole organ transplantation. However, islet transplantation also requires immunosuppression, and standard steroid regimens may be toxic to beta cells [2]. The 2000 Edmonton Trial demonstrated the first long-term successful islet transplantation by using a glucocorticoid-free immunosuppressive regimen (sirolimus and tacrolimus). The Clinical Islet Transplantation (CIT) Consortium seeks to improve upon the Edmonton Protocol by using anti-thymocyte globulin (ATG) and TNFα antagonist (etanercept). The trials currently in progress, in addition to research efforts to find new sources of islet cells, reflect enormous potential for islet transplantation in treatment of type I diabetes.  相似文献   

3.
Recent advances in diabetes care have facilitated the achievement and maintenance of excellent metabolic control. New insulin pumps and continuous glucose monitoring systems provide cause for optimism that an artificial pancreas may soon be developed. In addition, transplantation biology has advanced to the point where pancreas and islet transplants are being performed with increasing frequency. Recent reports suggest that improved techniques for isolation of islets and immune suppression may allow these procedures to become more commonplace. However, serious questions regarding long-term safety and efficacy need to be answered in older individuals before consideration is given to their more routine use in children and adolescents with diabetes.  相似文献   

4.
5.
6.
Stem cells have been considered as a useful tool in Regenerative Medicine due to two main properties: high rate of self-renewal, and their potential to differentiate into all cell types present in the adult organism. Depending on their origin, these cells can be grouped into embryonic or adult stem cells. Embryonic stem cells are obtained from the inner cell mass of blastocyst, which appears during embryonic day 6 of human development. Adult stem cells are present within various tissues of the organism and are responsible for their turnover and repair. In this sense, these cells open new therapeutic possibilities to treat degenerative diseases such as type 1 diabetes. This pathology is caused by the autoimmune destruction of pancreatic β-cells, resulting in the lack of insulin production. Insulin injection, however, cannot mimic β-cell function, thus causing the development of important complications. The possibility of obtaining β-cell surrogates from either embryonic or adult stem cells to restore insulin secretion will be discussed in this review.  相似文献   

7.
Plasma activity of the platelet-activating factor acetylhydrolase (PAF-AH) plays an important role in inflammation and atherosclerotic process in chronic diseases. We aimed to evaluate the levels of PAF-AH activity and their association with the metabolic profile and chronic complications in patients with type 1 diabetes. The study included 118 outpatients (54 males) aged 27.1+/-11.3 years with disease duration of 12.3+/-8.5 years with (n=38) or without (n=80) diabetes complications and 96 control subjects (48 males) matched for age, gender, body mass index and smoking habits. The serum levels of PAF-AH activity were higher in patients either with or without chronic complications (16+/-5.3 and 14+/-5.4 nmol/(min mL), respectively) than in controls (13+/-5.1 nmol/(min mL), P=0.02). In the total population, PAF-AH activity was correlated with age, HDL-cholesterol, total cholesterol and LDL-cholesterol. In patients, PAF-AH activity was correlated with age, HbA1c, uric acid, HDL-cholesterol, cholesterol, LDL-cholesterol, cholesterol/HDL-cholesterol ratio and the LDL-cholesterol/HDL-cholesterol ratio. It is concluded that PAF-AH plasma activity could be a novel candidate for low-grade inflammatory marker in patients with type 1 diabetes.  相似文献   

8.
The role of Islet Neogenesis-Associated Protein (INGAP) in islet neogenesis   总被引:4,自引:0,他引:4  
Islet Neogenesis-Associated Protein (INGAP) is a member of the Reg family of proteins implicated in various settings of endogenous pancreatic regeneration. The expression of INGAP and other RegIII proteins has also been linked temporally and spatially with the induction of islet neogenesis in animal models of disease and regeneration. Furthermore, administration of a peptide fragment of INGAP (INGAP peptide) has been demonstrated to reverse chemically induced diabetes as well as improve glycemic control and survival in an animal model of type 1 diabetes. Cultured human pancreatic tissue has also been shown to be responsive to INGAP peptide, producing islet-like structures with function, architecture and gene expression matching that of freshly isolated islets. Likewise, studies in normoglycemic animals show evidence of islet neogenesis. Finally, recent clinical studies suggest an effect of INGAP peptide to improve insulin production in type 1 diabetes and glycemic control in type 2 diabetes. Mark Lipsett and Stephen Hanley contributed equally.  相似文献   

9.
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro , MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro . On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.  相似文献   

10.
Troglitazone and related compounds: therapeutic potential beyond diabetes   总被引:8,自引:0,他引:8  
Fujiwara T  Horikoshi H 《Life sciences》2000,67(20):2405-2416
Troglitazone and structurally related compounds (pioglitazone, rosiglitazone etc.) containing thiazolidinediones (TZD) are a novel class of antidiabetic agents which decrease blood glucose in diabetic animal models and in patients with Non-Insulin-Dependent Diabetes Mellitus (NIDDM) through alleviating insulin resistance. A large body of evidence is now accumulating indicating that insulin resistance and/or resulting hyperinsulinemia underlie the pathogenesis of not only diabetes but also of the clustering syndrome called "syndrome X" or "insulin resistance syndrome" which includes hypertension, dislipidemia and hypercoagulation. Therefore, TZD class of insulin sensitizers seem to have therapeutic potential to improve this clustering syndrome in addition to diabetes. Moreover, it was demonstrated that the TZD class of insulin sensitizers including troglitazone bind and activate the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor. Although PPARgamma is predominantly expressed in adipose tissue, one of the target tissues for insulin, it have been subsequently found to be expressed in macrophages, vascular smooth muscle cells (VSMC), endothelial cells and several cancer cell lines. PPARgamma activation by PPARgamma agonists such as TZD class of insulin sensitizers in these cells modulates these cell functions such as the production of inflammatory cytokine by macrophages, proliferation and migration of VSMC, and growth or differentiation in cancer cells. In addition, troglitazone has potent antioxidant effect, and suppresses both L-type and receptor operated Ca2+ channel and protein kinase C. Thus since TZD class of insulin sensitizers has many kind of therapeutic effect in addition to lowering blood glucose, these agents expect to have therapeutic potential beyond diabetes.  相似文献   

11.
Current treatments for AMI centre on prompt restoration of epicardial coronary blood flow. Despite improvements, AMI is still associated with significant morbidity and mortality. Novel approaches are therefore keenly sought. Intercellular adhesion molecule-1 (ICAM-1, CD54) is a member of the immunoglobulin superfamily. It is implicated in neutrophil and monocyte-endothelial cell adhesion, processes contributing to myocardial neutrophil infiltration and microvascular coronary slow flow, both viewed as important to the pathophysiologic responses in AMI. ICAM-1 would therefore appear an important potential therapeutic target in this context, and is the subject of this review.  相似文献   

12.
Exenatide (synthetic exendin-4), glucagon-like peptide-1 (GLP-1), and GLP-1 analogues have actions with the potential to significantly improve glycemic control in patients with diabetes. Evidence suggests that these agents use a combination of mechanisms which may include glucose-dependent stimulation of insulin secretion, suppression of glucagon secretion, enhancement of beta-cell mass, slowing of gastric emptying, inhibition of food intake, and modulation of glucose trafficking in peripheral tissues. The short in vivo half-life of GLP-1 has proven a significant barrier to continued clinical development, and the focus of current clinical studies has shifted to agents with longer and more potent in vivo activity. This review examines recent exendin-4 pharmacology in the context of several known mechanisms of action, and contrasts exendin-4 actions with those of GLP-1 and a GLP-1 analogue. One of the most provocative areas of recent research is the finding that exendin-4 enhances beta-cell mass, thereby impeding or even reversing disease progression. Therefore, a major focus of this is article an examination of the data supporting the concept that exendin-4 and GLP-1 may increase beta-cell mass via stimulation of beta-cell neogenesis, stimulation of beta-cell proliferation, and suppression of beta-cell apoptosis.  相似文献   

13.
Islet amyloid polypeptide (IAPP, amylin) is secreted from pancreatic islet beta-cells and converted to amyloid deposits in type 2 diabetes. Conversion from soluble monomer, IAPP 1-37, to beta-sheet fibrils involves changes in the molecular conformation, cellular biochemistry and diabetes-related factors. In addition to the recognised amyloidogenic region, human IAPP (hIAPP) 20-29, the peptides human or rat IAPP 30-37 and 8-20, assume beta-conformation and form fibrils. These three amyloidogenic regions of hIAPP can be modelled as a folding intermediate with an intramolecular beta-sheet. A hypothesis is proposed for co-secretion of proIAPP with proinsulin in diabetes and formation of a 'nidus' adjacent to islet capillaries for subsequent accumulation of secreted IAPP to form the deposit. Although intracellular fibrils have been identified in experimental systems, extracellular deposition predominates in animal models and man. Extensive fibril accumulations replace islet cells. The molecular species of IAPP that is cytotoxic remains controversial. However, since fibrils form invaginations in cell membranes, small non-toxic IAPP fibrillar or amorphous accumulations could affect beta-cell stimulus-secretion coupling. The level of production of hIAPP is important but not a primary factor in islet amyloidosis; there is little evidence for inappropriate IAPP hypersecretion in type 2 diabetes and amyloid formation is generated in transgenic mice overexpressing the gene for human IAPP only against a background of obesity. Animal models of islet amyloidosis suggest that diabetes is induced by the deposits whereas in man, fibril formation appears to result from diabetes-associated islet dysfunction. Islet secretory failure results from progressive amyloidosis which provides a target for new therapeutic interventions.  相似文献   

14.
15.
Plasma activity of the platelet-activating factor acetylhydrolase (PAF-AH) plays an important role in inflammation and atherosclerotic process in chronic diseases. We aimed to evaluate the levels of PAF-AH activity and their association with the metabolic profile and chronic complications in patients with type 1 diabetes. The study included 118 outpatients (54 males) aged 27.1 ± 11.3 years with disease duration of 12.3 ± 8.5 years with (n = 38) or without (n = 80) diabetes complications and 96 control subjects (48 males) matched for age, gender, body mass index and smoking habits. The serum levels of PAF-AH activity were higher in patients either with or without chronic complications (16 ± 5.3 and 14 ± 5.4 nmol/(min mL), respectively) than in controls (13 ± 5.1 nmol/(min mL), P = 0.02). In the total population, PAF-AH activity was correlated with age, HDL-cholesterol, total cholesterol and LDL-cholesterol. In patients, PAF-AH activity was correlated with age, HbA1c, uric acid, HDL-cholesterol, cholesterol, LDL-cholesterol, cholesterol/HDL-cholesterol ratio and the LDL-cholesterol/HDL-cholesterol ratio. It is concluded that PAF-AH plasma activity could be a novel candidate for low-grade inflammatory marker in patients with type 1 diabetes.  相似文献   

16.
胰高血糖素样肽1受体--治疗糖尿病新药的研究热点   总被引:5,自引:0,他引:5  
胰高血糖素样肽l(glucagon—like peptide—l,GLP-1)与胰岛素分泌和糖代谢调节密切相关。GLP-1与其受体(GLP-1receptor,GLP-1R)结合后,主要通过cAMP和P13K两条信号途径,促进胰岛素的分泌,刺激胰岛β细胞的增殖和分化。对GLP-1R结构和信号传导机制的研究,有助于了解其在糖尿病病理进程中的作用,为开发新型糖尿病治疗药物指明方向。  相似文献   

17.
Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co-receptor for a number of extracellular ligands including class III/IV semaphorins, certain isoforms of vascular endothelial growth factor and transforming growth factor beta. An exact understanding of the role of NRP1 in the immune system has been obscured by the differences in NRP1 expression observed between mice and humans. In mice, NRP1 is selectively expressed on thymic-derived Tregs and greatly enhances immunosuppressive function. In humans, NRP1 is expressed on plasmacytoid dendritic cells (pDCs) where it aids in priming immune responses and on a subset of T regulatory cells (Tregs) isolated from secondary lymph nodes. Preliminary studies that show NRP1 expression on T cells confers enhanced immunosuppressive activity. However, the mechanism by which this activity is mediated remains unclear. NRP1 expression has also been identified on activated T cells and Tregs isolated from inflammatory microenvironments, suggesting NRP1 might represent a novel T cell activation marker. Of clinical interest, NRP1 may enhance Treg tumour infiltration and a decrease in NRP1+ Tregs correlates with successful chemotherapy, suggesting a specific role for NRP1 in cancer pathology. As a therapeutic target, NRP1 allows simultaneous targeting of NRP1-expressing tumour vasculature, NRP1+ Tregs and pDCs. With the development of anti-NRP1 monoclonal antibodies and cell-penetrating peptides, NRP1 represents a promising new target for cancer therapies. This paper reviews current knowledge on the role and function of NRP1 in Tregs and pDCs, both in physiological and cancer settings, as well as its potential as a therapeutic target in cancer.  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, which has as its primary target, the synovial tissues and articular cartilage. The current pharmacological treatment of RA includes non-steroidal anti-inflammatory drugs, corticosteroids, and disease-modifying anti-rheumatic drugs. Newer biological agents that work by inactivation of proinflammatory cytokines are available for treatment of RA. Sphingosine-1-phosphate (S1P) is a bioactive lipid that is generated from phosphorylation of sphingosine by activation of sphingosine kinase, and has been implicated as an important mediator in pathophysiological processes, including cell growth, differentiation, migration and survival, and angiogenesis. Several studies have explored the role of S1P in the pathogenesis of RA. The aim of this article was to review the biology and distribution of S1P, together with its role in RA, and to discuss its potential as a therapeutic target for RA.  相似文献   

19.
Studies on diabetes have long been hampered by a lack of authentic disease models that,ideally,should be unlimited and able to recapitulate the abnormalities in...  相似文献   

20.
Over the past decades, there has been a major increase in type 2 diabetes (T2D) prevalence in most regions of the world. Diabetic patients are more prone to cardiovascular complications. Accumulating evidence suggests that adipose tissue is not simply an energy storage tissue but it also functions as a secretory tissue producing a variety of bioactive substances, also referred to as adipokines. The balance between pro-inflammatory adipokines and protective adipokines is disturbed in type 2 diabetes, this can be regarded as adipose tissue dysfunction which partly promote the pathogenesis of diabetes complications. In this review, we not only discuss the favorable adipokines like adiponectin, omentin, C1q tumor necrosis factor-related proteins, but also unfavorable ones like resisitin and visfatin, in the aim of finding potential biomarkers recommended for the clinical use in the diagnosis, prognosis and follow up of patients with T2D at high risk of developing cardiovascular diseases as well as leading to new therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号