首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Partially purified nucleotide fraction of moss containing [14C]-labelled putative adenosine 3′, 5′ -cyclic monophosphate (cAMP) and marker authentic [3H] -cAMP was characterized by chemical deamination and also by the enzymatic hydrolysis with beef heart cyclic nucleotide phosphodiesterase. A significant conversion of marker authentic [3H] -cAMP into [3H] -inosine 3′, 5′ -cyclic monophosphate (cIMP) and [3H] -5′ adenosine monophosphate was observed by respective treatments. In contrast, the [14C] -labelled putative cAMP from control and theophylline-treated moss tissue was insensitive to chemical deamination and enzymatic hydrolysis. Apparently, the [14C] -labelled product which comigrates with authentic [3H] -cAMP does not represent true cAMP. Both the methods employed for characterization of the labelled putative cAMP were sensitive enough to detect picomole quantities of authentic [3H] -cAMP. Lack of detectability of prelabelled [14C] -cAMP in our preparations implies that the tissue may contain authentic cyclic AMP below the picomole levels. Thus, the attributed physiological role to adenosine 3′, 5′ -cyclic monophosphate in moss tissue appears somewhat skeptical.  相似文献   

2.
Livers from fed male rats were perfused in vitro with O2′-monobutyryl guanosine 3′,5′-cyclic monophosphate. The output of triglyceride was reduced, while output of ketone bodies and glucose was stimulated by 10?4M monobutyryl guanosine 3′,5′-cyclic monophosphate. No effect was observed with 10?5 M nucleotide. Monobutyryl guanosine 3′,5′-cyclic monophosphate did not affect uptake of free fatty acids. In these respects, monobutyryl guanosine 3′,5′-cyclic monophosphate mimics the effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, although the guanylic nucleotide seems to be less potent than the adenosine 3′,5′-cyclic monophosphate derivative.  相似文献   

3.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

4.
A comparison has been made between the capacity to hydrolyse 2′,3′-cyclic adenosine monophosphate and 3′,5′-cyclic adenosine monophosphate in subcellular fractions of normal and neoplastic (lymphosarcoma) spleen of C57BL mice. The effect of X-irradiation on these activities was tested. Subcellular fractionation of normal and lymphosarcoma spleen points to a different overall localization of the enzymes. The 2′,3′-cyclic nucleotide phosphodiesterase (2′,3′-cAMPase) has its highest specific activity in the particulate fractions of the cell, while the data on 3′,5′-cyclic nucleotide phosphodiesterase (3′,5′-cAMPase) show the highest activity in the soluble fraction. The 2′,3′-cAMPase activity is higher in the tumor as compared to the normal tissue, while the opposite holds for 3′,5′-cAMPase. Total body irradiation of normal mice with a dose of 600 rads of X-rays, results in a clear drop in 2′,3′-cAMPase 48 hours after the exposure. The 3′,5′-cAMPase is hardly affected at this time. Neither imidazol nor Mg++ has any influence on the 2′,3′-cAMPase. The pH optimum for 3′,5′-cAMPase and 2′,3′-cAMPase appears to be 7.7 and 6.2 respectively. This report suggests a no-identity of the two enzymes in mouse spleen, a situation different from that found in certain plants.  相似文献   

5.
–Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels increase about 5-fold in the cerebral cortex and 2-fold in the cerebellum following electroconvulsive shock (ECS). The peak levels of cyclic AMP occur at 45 s after ECS in the cerebral cortex, and at 15 s in the cerebellum. In the cerebral cortex, ECS produces twice the cyclic AMP accumulation as does decapitation in a comparable time period; however, the relative effect of a number of neurotropic agents on the cyclic AMP accumulation is essentially the same, whether stimulated by decapitation or by ECS. In the cerebellum, the levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) also increase following ECS. The cyclic GMP levels are greatest at 60 s after ECS during the postictal depression. An association between elevated cerebellar cyclic GMP and depression seems unlikely, since CNS depressants either lowered or had no effect on cyclic GMP levels. From these results, cyclic nucleotide profiles following treatments such as ECS or decapitation may be useful in elucidating the molecular events involved in seizures, brain injury and ischemia.  相似文献   

6.
The adenosine 3′, 5′-cyclic monophosphate phosphodiesterase (PDE) activities were evaluated in X-irradiation induced Holtzman rat small bowell adenocarcinoma and age-matched normal small intestine. Within normal small intestine, PDE activity was optimal at pH 7.4, and highly dependent upon the addition of Mg2+ or Mn2+. Analyses of the rat small bowel adenocarcinoma revealed significantly elevated PDE activities above the normal small bowel which were found to be relatively constant throughout the length of the ileum and jejunum. These findings suggest that the diminished intracellular adenosine 3′, 5′-cyclic monophosphate levels observed in this lesion (1) may be the consequence of elevated PDE activities.  相似文献   

7.
Adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP) were detected at concentrations of 8–11 and 10–20 pmol · mg?1 protein, respectively, in zoospores of a brown alga, Undaria pinnatifida (Harvey) Suringer. Cellular levels of these cyclic nucleotides did not substantially change during dark to light transition. cAMP-stimulated protein phosphorylation was found in soluble cell-free extracts of zoospores of Undaria pinnatifida and Laminaria angustata Kjellman.  相似文献   

8.
The effects of chick brain–spinal cord extract on morphological development and cyclic nucleotide levels of cultured chick embryo skeletal muscle cells were determined. It had previously been shown that the extract stimulated morphological differentation, protein synthesis, and cholinesterase activity of muscle cells. Myoblasts fused earlier and an increase in number as well as diameter of myotubes were seen in the extract treated cultures. Cyclic nucleotides levels were higher (almost twice the controls for both adenosine 3′, 5′ -cyclic monophosphate and guanosine 3′, 5′ -cyclic monophosphate) and preceded their occurence in the control cultures. It was suggested that factor(s) in the extract interact with membrane receptor(s) to alter nucleotide levels which, in turn, allow the effects to be expressed.  相似文献   

9.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

10.
Protected dinucleoside‐2′,5′‐monophosphate has been prepared to develop a prodrug strategy for 2‐5A. The removal of enzymatically and thermally labile 4‐(acetylthio)‐2‐(ethoxycarbonyl)‐3‐oxo‐2‐methylbutyl phosphate protecting group and enzymatically labile 3′‐O‐pivaloyloxymethyl group was followed at pH 7.5 and 37 °C by HPLC from the fully protected dimeric adenosine‐2′,5′‐monophosphate 1 used as a model compound for 2‐5A. The desired unprotected 2′,3′‐O‐isopropylideneadenosine‐2′,5′‐monophosphate ( 9 ) was observed to accumulate as a major product. Neither the competitive isomerization of 2′,5′‐ to a 3′,5′‐linkage nor the P–O5′ bond cleavage was detected. The phosphate protecting group was removed faster than the 3′‐O‐protection and, hence, the attack of the neighbouring 3′‐OH on phosphotriester moiety did not take place.  相似文献   

11.
The voltammetric oxidation of adenosine-3′,5′-cyclic monophosphate (3′,5′-CAMP) has been studied in the pH range 2.13–10.07 using pyrolytic graphite electrode (PGE). Voltammetric, coulometric, spectral studies, and product characterization indicate that the oxidation of 3′,5′-CAMP occurs in an EC reaction involving a 6H+, 6e process at pH 7.24. Electrooxidized products were seperated by semipreparative high performance liquid chromatography (HPLC) and were characterized by mp, 1HNMR, FTIR, and GC-mass as allantoin cyclic ribose monophosphate and 3 dimers as the major products. A detailed interpretation of the redox mechanism of 3′,5′-CAMP also has been presented to account for the formation of various products.  相似文献   

12.
Cytidine 2′,3′-cyclic monophosphate (2′,3′-cCMP) and uridine 2′,3′-cyclic monophosphate (2′,3′-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2′,3′-cCMP and 2′,3′-cUMP were determined. Addition of 2′,3′-cCMP and 2′,3′-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures.  相似文献   

13.
Abstract

A 3′, 5′-cyclic-AMP phosphodiesterase (PDE) was detected and measured in the lichen Evernia prunastri. The percentage of hydrolysis of tritiated 3′, 5′-cyclic-adenosine monophosphate ([3H]-cAMP) and 3′, 5′-cyclic-guanosine monophosphate ([3H]-cGMP) by the PDE enzyme into tritiated 5′-adenosine-monophospahte ([3H]-AMP) and tritiated 5′-guanosine-monophospahte ([3H]-GMP) was measured by treating the PDE products with a 5′-nucleotidase enzyme present in snake venom. The lysate fraction (L) (plasma membranes and cell walls) and the supernatant (S) (soluble fraction of the cells) were tested. In both fractions, competition of unlabelled cAMP, but not unlabelled cGMP, was revealed. Specific competitive PDE inhibitors such as IBMX inhibited enzymatic activity. Although it is thought that in this species cAMP is regulated by red/far red light through PDE activity, this is the first report that seems to suggest the presence of a PDE activity specific for cAMP in lichenized fungi. However, this work is at a preliminary stage and despite the high levels of enzymatic activity with cAMP found in both fractions, data are still insufficient to state the absolute specificity for this nucleotide.  相似文献   

14.
Enzymic analysis of cyclic 3', 5'-AMP in mammalian tissues and urine   总被引:10,自引:0,他引:10  
The details are presented for the analysis of 3′,5′ cyclic adenosine monophosphate (3′5′CAMP) in milligram amounts of mammalian tissues (muscles, liver, brain, and kidney) and in microliter samples of urine. An examination of the sources of difficulty and how they are effectively handled is also included. In the determination of tissue 3′5′CAMP the cyclic nucleotide is first separated from 5′-nucleoside mono-, di-, and triphosphates by cellulose thin-layer chromatography following Ba(OH)2-ZnSO4 precipitation of extracts. After quantitative recovery 3′,5′CAMP is converted to 5′ AMP and subsequently to ATP by the actions of phosphodiesterase, myokinase, and pyruvate kinase. Enzymic cycling with the hexokinase-pyruvate kinase system is then used to produce a proportional concentration of G-6-P equivalent to several thousand fold the ATP concentration and the G-6-P measured fluorometrically. Cyclic adenylate in urine samples is determined directly without prior separation from any urinary components. Examples are presented of the analytical procedures applied to the measurement of 3′5′CAMP levels in tissues and urine after various experimental treatments. These include the effects of epinephrine in skeletal muscle in vitro and in vivo, of adrenalectomy and hydrocortisone in liver, of ischemia in brain, and of hypertonic infusion on urinary excretion of 3′5′CAMP.  相似文献   

15.
Adenosine 3′, 5′-monophosphate (cyclic AMP) and guanosine 3′,5- monophosphate (cyclic GMP) levels were measured in seven brain areas of spontaneously hypertensive rats (SHR) and two groups of control rats. In cerebral cortex, hypothalamus, pons-medulla oblongata and cerebellum cyclic AMP levels were higher in SHR than in Wistar-Kyoto controls. Cyclic GMP levels were higher in SHR than in Wistar-Kyoto rats in all brain areas except for the striatum and hippocampus where the levels were lower. There were also some differences in cyclic nucleotide levels between Wistar-Kyoto and Wistar-Charles River controls.  相似文献   

16.
Galactosyl and sialyl transferases in the plasma membrane of SV40-transformed mouse cells were inhibited by 0.5 mM dibutyryl adenosine-3′,5′ cyclic monophosphate (db-cAMP) while those of normal cells did not respond to this compound. The differential effects of dibutyryl adenosine-3′,5′ cyclic monophosphate on the membrane-bound glycosyl transferases were observed both in isolated plasma membrane and in intact cell membrane. It is suggested that some of the morphological restorations of normal cell characteristics during reverse transformation are partly due to the direct effect of this compound on the cell membrane.  相似文献   

17.
Background aimsObesity is correlated with chronic low-grade inflammation. Thus the induction of inflammation could be used to stimulate adipose tissue formation in tissue-engineering approaches. As nitric oxide (NO) is a key regulator of inflammation, we investigated the effect of NO and its downstream signaling molecule guanosine 3′,5′-cyclic monophosphate (cGMP) as well as adenosine 3′,5′-cyclic monophosphate (cAMP) on preadipocytes in vitro.MethodsPreadipocytes were isolated from human subcutaneous adipose tissue, cultured until confluence, and differentiated. The NO donor diethylenetriamine (DETA)/NO (30–150 μm) was added during proliferation and differentiation. Additionally, cGMP/cAMP analogs 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP), 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate (8-pCPT-cGMP) and 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP), and the adenylyl cyclase activator forskolin, specific guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and adenylyl cyclase inhibitor 2′-5′-dideoxyadenosine (ddA), were applied. Proliferation and differentiation were evaluated.ResultsDETA/NO in combination with the standard differentiation procedure significantly enhanced maturation of precursor cells to adipocytes. Proliferation, in contrast, was inhibited in the presence of NO. The application of cGMP and cAMP, respectively, increased pre-adipocyte differentiation to an even higher extent than NO. Inhibitors of the underlying pathways caused a significant decrease in adipogenic conversion.ConclusionsOur results support the application of NO donors during transplantation of preadipocytes in a 3-dimensional setting to accelerate and optimize differentiation. The results suggest that, instead of the rather instable and reactive molecule NO, the application of cGMP and cAMP would be even more effective because these substances have a stronger adipogenic effect on preadipocytes and a longer half-life than NO. Also, by applying inhibitors of the underlying pathways, the induced inflammatory condition could be regulated to the desired level.  相似文献   

18.
Soluble 3′,5′-nucleotide phosphodiesterase (PDE) activity is described in chicken epiphyseal and articular cartilage. Kinetic studies of these enzymes demonstrate a high and low Km for the substrates, adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Epiphyseal and articular PDE activities are inhibited by those anti-inflammatory agents which are potent inhibitors of the enzyme, prostaglandin synthetase (PS). Specificity of this inhibition is indicated by the activity of these agents against the low Km enzyme. Other anti-inflammatory agents with significantly less potency as PS inhibitors or with no activity against prostaglandin synthetase are found to be either inactive or relatively less potent as inhibitors of cartilage PDE activity. A variety of other anti-inflammatory or anti-rheumatic agents, which are not known to affect prostaglandin synthetase activity, are poor inhibitors of cartilage PDE activity. These data provide insight into the mechanism of action of certain anti-inflammatory agents and into the relationships between prostaglandins and inflammatory reactions.  相似文献   

19.
Abstract

Several new prodrugs of 5-fluoro-2′-deoxyuridine 5′-monophosphate and 3′,5′-cyclic monophosphate were synthesized and their antitumor activities were evaluated in vitro.  相似文献   

20.
Abstract

An enzymatic method was developed for the preparation of unlabeled and [β-32P]-labeled β-L-2′,3′-dd-5′ATP from the monophosphate with near quantitative yields. β-L-2′,3′-dd-5′ATP was a competitive and potent inhibitor of adenylyl cyclases (IC5 ~ 30 nM). Upon uvirradiation β-L-2′,3′-dd-[β-32P]-5′ATP directly crosslinked to a chimeric construct of this enzyme. Data suggest that this is a pre-transition state inhibitor and contrasts with the equipotent 2′,5′-dd-3′ATP, a post-transition state, noncompetitive inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号