首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

2.
The number of airborne microorganisms in the area of large-scale composting facilities with different composting techniques (A: open facility using the intensive decomposition process [4000 t/year]. B: closed facility with compost containers [7000 t/year], C: closed facility with table-pile compositing and automatic turning equipment [22 000 t/year]) was investigated using impactor sampling systems (Andersen samplers). All counts carried out inside the closed facilities, especially during the turning process, showed values of >5.0 × 105 CFU/m3 for viable bacteria and moulds with a proportion ofAspergillus fumigatus of up to 64%. Depending on the type of facility, different median values were determined inside the plant area. Counts were highest in the immediate area around the biofilter outside of Facility C (1.7 × 104 CFU/m3 for bacteria and 9.5 × 103 CFU/m3 for moulds). In view of the high load of ambient airborne microorganisms inside the composting facilities, adequate occupational health measures are urgently required. Counts determining the hazard to neighbourhood residents at distances of between 150 and 2000 m showed, depending on the facility, annual median values of 170–330 CFU/m3 for bacteria, 75–340 CFU/m3 for moulds, and 15–52 CFU/m3 forA. fumigatus. Higher individual counts — up to 3 × 103 CFU/m3 for moulds and up to 350 CFU/m3 forA. fumigatus — were found as a result of specific climatic influences, (e.g. winds) and activities as well poor operation. Given the high proportion ofA. fumigatus in the exhaust air, this mould can serve as an indicator for the evaluation of the health risk. However, the maximum values found in the present study, may also be caused by other events in rural areas, (e.g. agricultural activities). With regard to neighbourhood residents, odour complaints are more important than pollution by microorganisms.  相似文献   

3.
This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 × 105 and 143.7 CFU/m3, respectively. The concentration of airborne culturable fungi was about 103 CFU/m3, with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.  相似文献   

4.
The project was aimed at evaluating the potential occupational exposure of swine farm workers to dust and microorganisms present in piggery bioaerosols (especially in its respirable fraction) under various breeding conditions. Sampling was carried out in 14 buildings located at 13 pig breeding and production farms in Poland. Concentrations of inhalable and respirable dusts in the air of the piggeries were low (means, respectively, 1.76 and 0.23 mg/m3). The concentration of microorganisms was generally high (mean = 3.53 × 10cfu/m3). More than 96% of determined microorganisms were bacteria (mean = 3.42 × 105 cfu/m3). The fungal concentration was distinctly lower (mean = 2.71 × 10cfu/m3). The concentration of bacteria in the respirable fraction of bioaerosol (mean = 1.51 × 10cfu/m3) made up for 48.2% of their total concentration, while the level of fungi in that fraction (mean = 1.50 × 10cfu/m3) formed 68.8% of the total fungal concentration. The concentration of inhalable dust was significantly modified by the type of breeding system. The factors that significantly affected the total concentrations of microbes and bacteria, as well as their levels in the bioaerosols’ respirable fraction were as follows: herd size, breeding system, feeding method and the type of ventilation system. In the case of fungi, these were the livestock breeding system and the feeding method. Moreover, there was a high positive correlation of inhalable dust concentrations with the fungal concentration, CO2 and relative humidity. A negative correlation was found between concentrations of each microbe group and the airflow velocity. Swine farm workers are exposed to relatively low dust concentrations and high concentrations of microorganisms, bacteria in particular. Fungi, to a much larger extent than bacteria, are correlated with the respirable particles of a piggery bioaerosol, which may harm the respiratory system of exposed workers.  相似文献   

5.
The frequency of fungal spores in the air of three different sections of a rural bakery was analyzed using a Burkard personal slide sampler and Andersen two stage viable sampler. In average concentration of spores (No./m3) was 228–26770/m3 and concentration of viable colony forming units (CFU/m3) was 65-2061 CFU/m3. Dominant fungus species both culturable and nonculturable, were species of Aspergillus and Penicillium, Cladosporiumsp., Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Cladosporium cladosporioides, Penicillium citrinum and Alternaria alternata. Seasonal variations in the spore concentrations were clearly observed in case of some fungi. Total culturable mould concentration of different bakery sections sometimes exceeded the acceptable limit for a healthy indoor environment. Antigenic extracts prepared from some dominant culturable fungi showed high level of allergenicity in skin prick tests indicating that they could be responsible for allergic respiratory dysfunction of bakery workers.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
Inhalation of airborne microorganisms and organic dust is an occupational concern among workers in agricultural industries. Airborne microorganisms and particulate matter samples were collected from poultry house, flourmill, textile, and food industry sites by use of liquid impinger and gravimetric samplers. Particulate matter concentrations were recorded at median concentrations of 1.56, 1.92, 4.39, and 0.7 mg/m3 in the occupied poultry house, textile, flourmill, and food indoor working environments, respectively. The highest median particulate matter concentration (27.9 mg/m3) was detected at the flourmill’s stack site. The highest median indoor concentration of culturable airborne bacteria (6.23 × 105 CFU/m3) was found at the occupied poultry-house site and the lowest concentration (4.6 × 103 CFU/m3) was found at the food industry site. The highest median indoor concentration of culturable airborne fungi (3.15 × 104 CFU/m3) was found at the flourmill site whereas the lowest (1.24 × 103 CFU/m3) was found at the textile industry site. Bacillus and Staphylococcus were the predominant Gram-positive bacteria whereas Acinetobacter and Klebsiella were the predominant Gram-negative bacteria. Escherichia coli and Salmonella were only detected in the indoor air at the poultry house site. Aspergillus flavus, Aspergillus niger, Penicillium, and yeast were the predominant fungal types at flourmill, textile, food industry, and poultry house, respectively. Workers were continuously exposed to airborne microorganisms at a median value of 104 CFU/m3 in all the industries studied.  相似文献   

7.
Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4?μm polycarbonate membrane filter using the MiniVol sampler at 5?l/min for 20?h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873?CFU/m3 and 160–1,897?CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000?microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39?EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.  相似文献   

8.
Thailand border market is where the local Thais, Cambodians, Laotians, and Burmeses exchange their goods and culture at the border checkpoints. It is considered to be the source of aerial disease transmission especially for foreigners because it is always very crowded with people from all walks of life. Unhealthy air quality makes this area high risk of spread of airborne diseases. This study assessed airborne concentrations of bacteria and fungi in a border market to improve exposure estimates and develop efficient control strategies to reduce health risk. The density and distribution of airborne bacteria and fungi were investigated in the Chong Chom border market in Surin Province, Thailand. Eighteen air sampling sites were taken from outdoors and various work environments including indoor footpaths, wooden handicraft shops, electronic shops, the secondhand clothing shops, and fruit market areas. Exposed Petri plate method and liquid impinger sampler were used for sampling at the breathing zone, 1.5 m above the floor level, during weekend and holiday. Meteorological factors such as relative humidity, temperature, and light intensity were collected by portable data logger. The relative humidity was 67–73%, and temperature 29–33°C, and light varied between 18 and 270 Lux m−2. Gram-positive and Gram-negative bacteria were found at a mean value of 104 CFU m−3, and airborne fungi of 103 CFU m−3 were recorded. The highest concentration of culturable airborne microorganisms was found along the indoor footpath (9.62 × 104 CFU m−3 and 750.00 CFU/plate/h for impingement and sedimentation methods, respectively), the fruit market area (7.86 × 104 CFU m−3 and 592.42 CFU/plate/h for impingement and sedimentation methods, respectively), and the secondhand clothing shop (4.59 × 103 CFU m−3 and 335.42 CFU/plate/h for impingement and sedimentation methods, respectively) for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The lowest concentration of Gram-positive bacteria, Gram-negative bacteria, and fungi was found only at the outdoor area at 1.53 × 104 CFU m−3, 0.93 × 104 CFU m−3 and 0.80 × 103 CFU m−3 by means of impingement method and 136.67 CFU/plate/h, 69.25 CFU/plate/h, and 62.00 CFU/plate/h by means of sedimentation methods for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The most frequently present airborne bacteria were identified as Bacillus, Corynebacteria, Diplococcus, Micrococcus, Acinetobacter, Alcaligenes, Enterobacter, and spore former rods. Acremonium, Aspergillus, Cladosporium, Penicillium, and Sporotrichum were the most frequently found aerosol fungi genera. The distribution of airborne microorganisms correlated with relative humidity and light factors based on principal component analysis. In conclusion, the border market is a potential source of aerial disease transmission and a various hazards of bioaerosols for workers, consumers, sellers, and tourists. The bioaerosol concentration exceeded the standard of occupational exposure limit. Many major indicators of allergenic and toxigenic airborne bacteria and fungi, Acinetobacter, Enterobacter, Pseudomonas, Cladosporium, Alternaria, Aspergillus, and Penicillium, were found in the various market environments.  相似文献   

9.
To accurately quantify airborne Aspergillus fumigatus (A. fumigatus) spores in rabbit houses, the real-time polymerase chain reaction (real-time PCR) and culture-based counting method (CCM) were employed to determine the airborne A. fumigatus spore concentrations. The results showed that, of the three rabbit houses (A, B, and C), the average concentrations of airborne A. fumigatus spores determined by real-time PCR were 3.0 × 103, 3.3 × 103, and 1.5 × 103 spores/m3 air, respectively, while those determined by CCM were 2.5 × 102, 2.8 × 102, and 1.1 × 102 colony-forming unit/m3 air (CFU/m3 air), respectively, i.e., the former concentration was 12–14 times higher than the latter one. Therefore, the conventional CCM underestimated the concentrations of airborne fungal spores, and it is insufficient to determine the microbial aerosol concentration and evaluate the health risk only using CCM.  相似文献   

10.
A protocol for bioaerosol collection was developed that provides not only accurate predictions of fungal concentration, but also improves species recovery. Random transfer of a subset of 50 of the 400 impaction points from Andersen single-stage bioaerosol sampling plates results in subcultures that are accurate predictors of fungal concentration (CFU/m3), when compared to duplicate untouched Andersen plates. A linear regression model was developed to estimate CFU/m3 from the colonies counted on the Random-50 plates. The random transfer to five plates (“Random-50” plates), allows large numbers of fungi to be recovered and identified, including slow-growing fungi that otherwise would be masked by fast-growing fungi.  相似文献   

11.
According to Council Directive 90/679/EEC on the protection of workers from risks related to exposure to biological agents at work, nature, degree and duration of workers’ exposure to microorganisms must be determined. This directive has already been implemented in waste and wastewater management. The present case study investigates concentration and composition of microorganisms in a poultry slaughterhouse in the State of Styria, Austria. From June to November 2002, measurements were conducted at the sampling sites ‘moving rail’ and ‘gall bladder separation’ using the Andersen six stage viable cascade impactor and the SKC BioSampler. The results of this study were compared with other previous studies which were carried out using the same device (ACFM) and the same measurement methods. At the processing area of the ‘moving rail’, the median concentration of airborne mesophilic bacteria was 1.7×106 CFU/m3 which is 8000 times higher than the background concentration of residential areas (approx. 210 CFU/m3). The airborne microorganisms concentration was 1.7×104 CFU/m3 at composting plants which is 100 times lower than at a workplace of a poultry slaughterhouse. The study shows that poultry slaughterhouse employees are exposed to high concentrations of airborne microorganisms throughout the entire work time without using a respiratory protective device. For the protection of employees against airborne biological agents, relevant measures should be introduced to this field of work.  相似文献   

12.
Alfresco (def. clean, outdoor) airborne bacteria were collected with a commercially available wet-cyclone bioaerosol sampler to demonstrate its use, sample processing and resultant observations of total and culturable bacteria in mid-summer in the mid-Willamette River Valley, OR. Some critiques of the system are given. The maximum and minimum total and culturable airborne bacterial concentrations in the samples were 5.9 × 105 and 8.8 × 102 cells m−3, and 1.3 × 104 and 3.1 CFU m−3, respectively. What is thought to be a diurnal cycle was also observed for both fractions with highest concentrations during the day and lowest at dawn and dusk. The culturable bacteria as a percentage of the total, was maximal at mid-day (≈ 3%) and minimal at early morning and late evening (≈ 0.5–2%). Contrarily, the total bacteria in the downwind dust plume of a grass seed combine was 2.9 × 106 cells m−3 and of these approximately 73% were culturable, a much greater culturable percentage than found in the alfresco outdoor atmosphere.  相似文献   

13.
Occurrence of airborne enteric bacteria in Mexico city   总被引:1,自引:0,他引:1  
Summary An investigation of microbial air quality in the area of the National Autonomous University of Mexico, located in the southern part of Mexico City, was conducted for one year. Ambient outdoor concentrations and size distribution of airborne bacteria were measured, 130 samples were taken at noon, using an Andersen 6 stage sampler, located 2 m above ground level. Concentration ranges and colony-forming units per cubic meter of air (CFU m–3) found, were as follows:14 to 12999 for total bacteria, No growth (NG) to 55 for coliform bacteria, NG to 11 for fecal coliform and NG to 10 for fecal Streptococci.Bacteria associated with the potentially respirable fraction (0.65 to 4.7 µm) averaged 37% and 9% for total bacteria and coliform bacteria respectively. In 23% of the samples, coliform bacteria were recovered, with higher incidences during dry season. The most common of these were:Escherichia coli (15%), followed bySerratia (13%) andEnterobacter (10%),The total bacteria correlated significatively (p<0.05) with the following parameters: particulate matter smaller than 10 µm (PM10) (r=0.40), total suspended particulates (TSP) (r=0.26), daily variation of temperature (r=0.18), and vapor pressure (r=–0.16). These relationships indicate that fecal soil pollution could affect air quality with potential health risks.  相似文献   

14.
The airborne Penicillium spp. and total airborne fungal spore concentration was investigated in the grain shops of Nagpur city, India, using a volumetric Hi‐Air sampler system Mark II (Hi Media Laboratories Ltd., India). The mycotoxins were analysed from the Penicillium isolates obtained from the seeds by thin layer chromatography.

The mean concentration of the total fungi isolated from different grain shops ranged from 7.8×102 to 1.1×103 CFU/m3. The mean concentration of Penicillium isolated from the air of grain shops ranged from 8.6×101 CFU/m3 (10.8%) to 1.7×102 CFU/m3 (19.9%). Among the 13 species of Penicillium which were isolated, P. citrinum Thom was the most prevalent species (24.2%), followed by P. oxalicum Currie & Thom (16.5), P. digitatum Saccardo (8.9%), P. janthinellum Biourge (8.7%), P. funiculosum Thom (8.3%), P. chrysogenum Thom (6.4%), P. purpurogenum Stoll (6.2%), P. brevicompactum Dierckx (4.8%), P. frequentans Westling (4.2%), P. italicum Wehmer (3.8%), P. rubrum Stoll (3.4%), P. expansum Link (2.9%) and P. cyclopium Westling (1.6%).

Penicillium species were also isolated from seeds such as wheat, maize, soybean, and groundnut. The mycotoxins roquefortin C, citrinin, rubratoxin B, cyclopiazonic acid, verrucosidin, mitorubrinic acid and two unknown metabolites were isolated from Penicillium isolates.  相似文献   

15.
An experimental investigation was carried out to determine the agreement between two methods of viable bacteria aerosol detection. Various amounts of Bacillus globigii (BG) spores were aerosolized in 1-s bursts into a HEPA-filtered air stream and sampled simultaneously with a fluorescence aerosol particle sensor (FLAPS) and a slit to agar biological air sampler. The slit sampler incorporated 150-mm malt extract culture plates, which were incubated at 37°C for at least 12 h before culturable BG particles were counted in terms of colony-forming units (CFU). A relationship between CFU and optically detected viable bacteria particles was determined as culturable particle concentrations decreased. Through further analytical procedures, the FLAPS showed a limit of detection (LOD) of 4.2 bacterial particle/2.5 l of sampled air or 1.7 × 103 m−3. This real-time bacteria aerosol monitor could be used to detect burst contamination events during a surgical procedure. The technology may be used for developing a dose–response relationship between bacterial particle exposure and infection, a tool potentially helpful in determining patient risk.  相似文献   

16.
Summary A six-stage Andersens's sampler was compared with a single stage type (SAS) for the collection of airborne fungi particles. The efficiency of two non selective culture media, and namely malt agar (MA) and potato dextrose agar (PDA), which were both modified in order to inhibit bacterial growth, was compared as well. An overall assessment of quantitative results suggests that the two samplers have a comparable degree of efficiency. However, the SAS appears to collect a greater number of CFU/m3 in absence of wind and viceversa the Andersen one appears to be more efficient in the presence of wind. The number of species detected with the SAS device is smaller, thus requiring an increased number of suctions. Andersen sampler sieving, according to the aerodynamic characteristics of the particles, appears to be not too accurate: there is an overlap from stage to stage of the sampler and some larger particles settle on smaller particle-collecting stages and viceversa. The PDA, with streptomycin and chloramphenicol, is better and closer to the natural distribution pattern: the number of CFU/m3 is higher although the number of the collected species is about the same.  相似文献   

17.
The large part of the polyphenol oxidase was solubilized from tea leaf homogenate by addition of Tween-80. After filtration of the solubilized polyphenol oxidase fraction through a Sephadex G-25 column and fractionation of the filtrate with ammonium sulfate, the specific activity of the solubilized enzyme increased about 4 to 5 times as much as that of tea leaf homogenate. Optimum pH of the solubilized enzyme was 5.5, and was almost the same as that of water-insoluble enzyme in the acetone powder. The minimum concentrations required for the maximum activity were about 5×10?3 m, 4.3×10?3 m, and 3×10?3 m for d-catechin, l-epigallocatechin, and l-epigallocatechin-gallate, respectively. d-Catechin showed the highest activity among them. The enzyme activity was inhibited by potassium cyanide and sodium diethyldithiocarbamate.  相似文献   

18.
AISI-1020 carbon steel coupons were fixed onto a water circulation loop in order to study the effect of varying NaCl concentrations on formation of biofilms by natural populations of microorganisms. Overall, we observed a reduction in the number of bacteria attached to the metal surfaces as NaCl levels increased. At 12.85 and 80 g/l NaCl, the respective bacterial counts were: 1.7×109 CFU/cm2 and 7.5×102 CFU/cm2 for aerobic species; 1.3×104 CFU/cm2 and 2.1×10 CFU/cm2 for anaerobic species; and 1.8×103 CFU/cm2 and 4.6×10 CFU/cm2 for sulfate-reducing species. However, the opposite trend was observed for the numbers of iron-reducing bacteria: 4.1×106 CFU/cm2 at 12.85 g/l NaCl and 7.5 108 CFU/cm2 at 80 g/l NaCl, respectively. Fungal counts remained constant throughout the experimental period. The salt concentration at which the maximum corrosion rate was observed was 35 g/l. In view of the marked loss of metal mass recorded at this salinity, AISI-1020 carbon steel proved to belong to the group of alloys less resistant to corrosion. Journal of Industrial Microbiology & Biotechnology (2000) 25, 45–48. Received 07 December 1999/ Accepted in revised form 25 April 2000  相似文献   

19.
Starch industry wastewater was efficiently employed for the production of Sinorhizobium meliloti and the concentrated culture was used for the development of a biofertilizer formulation. Tween‐80 (0.02 g/L) acted as the best emulsifier for a Sinorhizobium–canola oil emulsion. The stability of the emulsion and survival of the organism was enhanced by supplementation of xanthan gum at pH 8. The refrigerated condition was most favorable for stability and survival of the microorganism. The survival of microorganism at 4±1°C was 2.78×1010 and 2.01×1010 CFU (colony forming unit)/mL on storage for 1 and 2 months, respectively. The values were higher than the prescribed cell count (×103 CFU/mL) for field application. At 40°C, the survival of bacteria reduced from 3×1010 CFU/mL to 8.1×109 and 8.8×106 CFU/mL in 1 and 2 months, respectively. Emulsion‐coated seed was incubated at different temperatures and a cell count of 105 CFU/seed was observed after 2 months of storage at 4°C, which was equal to the highest level of the described requirement (103–105 CFU/seed). Emulsion supplemented with xanthan gum improved the shelf‐life under optimized conditions (Sinorhizobium concentrate – canola oil (1:1) emulsion with 0.02 g/L Tween‐80; storage at pH 8 and temperature 4±1°C) and this emulsion with the required cell count and prolonged viability was used for the pre‐inoculation of seed or for in situ soil application.  相似文献   

20.
Airborne fungi were studied in the city of Athens using two complementary methods in which 136 concurrent samplings were carried out during the 12-month period from January until December 1998. A portable Burkard air sampler for agar plates was used for trapping the culturable portion of the mycobiota. Nineteen genera of fungi were identified and assessed in terms of total numbers and fluctuations in concentration (Alternaria, Arthrinium, Aspergillus, Aureobasidium, Botrytis, Chrysonilia, Cladosporium, Drechslera, Epicoccum, Fusarium, Mucor, Nigrospora, Paecilomyces, Penicillium, Rhizopus, Sclerotinia, Scopulariopsis, Trichoderma and Ulocladium), with the exception of those included in the Sphaeropsidales, the yeasts, and the non-sporulating fungi, which were counted as groups. A volumetric Burkard air sampler for glass slides was operating simultaneously for detecting the total mycobiota, including the non-culturable and the non-viable portion. Ascospores, basidiospores, spores of Myxomycetes, Ustilaginales, Uredinales and Erysiphales, teliospores of Puccinia, as well as conidia of the genera Curvularia, Helminthosporium, Periconia, Pestalotiopsis, Pithomyces, Polythrincium, Stachybotrys, Stemphylium and Torula were also recorded. Only seven of the genera were recovered by both samplers. The total numbers of fungal spores, which had a maximum concentration of 3,175 spores/m3, as well as the spore concentrations of the genera Cladosporium (2,565 spores/m3) and Alternaria (280 spores/m3) were underestimated by the viable method (2,435 CFU/m3 for the total, 2,169 CFU/m3 for Cladosporium and 180 CFU/m3 for Alternaria). The non-viable method fails to resolve the identification of the genera Penicillium and Aspergillus, which are major components of the airborne mycobiota (1,068 CFU/m3 and 204 CFU/m3, respectively) based on recovery by the viable method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号