首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Preantral follicles of cyclic hamsters were isolated on proestrus, estrus and diestrus I, incubated for 3 h in 1 ml TC-199 containing 1 microgram ovine luteinizing hormone (LH) (NIH-S22), and the concentrations of progesterone (P), androstenedione (A) and estradiol (E2) determined by radioimmunoassay. At 0900-1000 h on proestrus (pre-LH surge) preantral follicles produced 2.4 +/- 0.3 ng A/follicle per 3 h, less than 100 pg E2/follicle and less than 250 pg P/follicle. At the peak of the LH surge (1500-1600 h) preantral follicles produced 1.8 +/- 0.2 ng P and 1.9 +/- 0.1 A and less than 100 pg E2/follicle. After the LH surge (1900-2000 h proestrus and 0900-1000 h estrus) preantral follicles were unable to produce A and E2 but produced 4.0 +/- 1.0 and 5.0 +/- 1.1 ng P/follicle, respectively. By 1500-1600 h estrus, the follicles produced 8.1 +/- 3.1 ng P/follicle but synthesized A (1.6 +/- 0.2 ng/follicle) and E2 (362 +/- 98 pg/follicle). On diestrus 1 (0900-1000 h), the large preantral-early antral follicles produced 1.9 +/- 0.3 ng A, 2.4 +/- 0.4 ng E2 and 0.7 +/- 0.2 ng P/follicle. Thus, there was a shift in steroidogenesis by preantral follicles from A to P coincident with the LH surge; then, a shift from P to A to E2 after the LH surge. The LH/follicle-stimulating hormone (FSH) surges were blocked by administration of 6.5 mg phenobarbital (PB)/100 g BW at 1300 h proestrus. On Day 1 of delay (0900-1000 h) these follicles produced large quantities of A (2.2 +/- 0.2 ng/follicle) and small amounts of E2 (273 +/- 27 pg/follicle) but not P (less than 250 pg/follicle).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To assess the roles of FSH and LH on follicular growth, after various experimental manipulations, hamster follicles were sorted into 10 stages and incubated for 4 h with [3H]thymidine. Stages 1-4 correspond to follicles with 1-4 layers of granulosa cells, respectively; Stage 5 = 5 or 6 layers of granulosa cells plus theca; Stage 6 = 7-8 layers of granulosa cells plus theca; Stage 7 = early formation of the antrum; Stages 8-10 = small, intermediate and large antral follicles, respectively. Phenobarbitone sodium injected at 13:00 h on pro-oestrus blocked the normal rise of blood FSH and LH concentrations at 15:00 h and prevented the increase of [3H]thymidine incorporation into follicles of Stages 1-9. The optimal treatment to reverse the effects of phenobarbitone was 1 microgram FSH and 2 micrograms LH injected i.p. at 13:00 h which restored DNA replication to follicles of Stages 2-10: FSH acted primarily on Stages 2-5 and LH on Stages 5-10. Injection of phenobarbitone at 13:00 h on prooestrus followed by 2.5 micrograms FSH at 22:00 h restored DNA synthesis by the next morning to follicles at Stages 1-8. In hamsters hypophysectomized at 09:00 h on the day of oestrus (Day 1), injection on Day 4 of 2.5 micrograms FSH restored DNA synthesis 6 h later to Stage 2-6 follicles. Unilateral ovariectomy on Day 3 resulted 6 h later in an acute rise in FSH and LH and change of follicles from Stage 4 to Stage 5 but, paradoxically, there was decreased synthesis of DNA in follicles of Stages 5-10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 micrograms progesterone or estradiol-17 beta in serum-free defined medium and exposed to 1 muCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.  相似文献   

4.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

5.
To evaluate the roles of FSH and LH in follicular growth, GnRH-immunized anestrous heifers (n = 17) were randomly assigned (Day 0) to one of three groups (n = 5 or 6). Group 1 received i.m. injections of 1.5 mg porcine FSH (pFSH) 4 times/day for 2 days; group 2 received i.v. injections of 150 microg pLH 6 times/day for 6 days; group 3 received both pFSH and pLH as described for groups 1 and 2. After slaughter on Day 6, measurements were made of follicle number and size, and follicular fluid concentrations of progesterone (P(4)), estradiol (E(2)), and aromatase activity. Injection of pFSH increased (P: < 0.01) the serum concentrations of FSH between 12 and 54 h. Infusion of pLH increased (P: < 0.05) mean and basal concentrations of LH and LH pulse frequency. Serum E(2) concentrations were higher (P: < 0.05) for heifers given pFSH + pLH than those given either pFSH or pLH alone. There was no difference (P: > or = 0.24) between treatments in the number of small follicles (<5 mm). Heifers given pFSH or pFSH + pLH had more (P: < or = 0.02) medium follicles (5.0-9.5 mm) than those that were given pLH alone (none present). Heifers given pFSH + pLH had more (P: = 0.04) large follicles (> or =10 mm) than those given either pLH or pFSH alone (none present). Overall, only 1 of 35 small follicles and 2 of 96 medium follicles were E(2)-active (i.e., E(2):P(4) >1.0), whereas 18 of 21 large follicles (all in the pFSH + pLH treatment) were E(2)-active; of these, 8 of 18 had aromatase activity. Concentrations of E(2) and E(2) activity in follicular fluid were correlated (r > or = 0.57; P: < 0.0001) with aromatase activity in heifers given pLH + pFSH. In conclusion, pLH failed to stimulate follicle growth greater than 5 mm; pFSH stimulated growth of medium follicles that were E(2)-inactive at slaughter and failed to increase serum E(2) concentrations; whereas pFSH + pLH stimulated growth of medium follicles and E(2)-active large follicles, and a 10- to 14-fold increase in serum E(2) concentrations.  相似文献   

6.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

7.
As measured by radioreceptor assays, binding sites for FSH and prolactin were present at 09:00 h on the day of pro-oestrus in Stage 1-10 follicles (primary to antral) with prolactin receptors 3-6 times higher than FSH sites in Stages 1-3 (3 layers of granulosa cells). Specific binding sites for hCG were present in Stage 1 and 2 follicles (2 layers of granulosa cells) but thereafter their distribution was erratic and they were not consistently detectable until Stage 5, when thecal cells first appeared. Using topical autoradiography, specific binding for FSH was evident in Stage 1-4 follicles (4 layers granulosa cells) whereas specific hCG-binding was not. After the preovulatory gonadotrophin surges, by 21:00 h on pro-oestrus, FSH receptors declined in Stages 5-10, prolactin receptors fell in Stages 8 and 10 (small and large antral follicles) and hCG receptors were reduced in Stages 7 (start of antral cavity) to 10. On the morning of oestrus, for follicles from Stage 4 onwards, receptor numbers usually returned to levels found at 09:00 h on pro-oestrus. At oestrus, the few remaining Stage 10 follicles were all atretic and contained significantly reduced FSH and prolactin receptors but numbers of hCG binding sites comparable to those at 09:00 h of pro-oestrus. These results provide evidence of gonadotrophin receptors in small primary and secondary follicles which is consistent with increased DNA synthesis in small hamster follicles on the afternoon of pro-oestrus and on the morning and afternoon of oestrus. Periovulatory changes in gonadotrophin concentrations may therefore affect early stages of folliculogenesis.  相似文献   

8.
Injecting 2 or 4 mg of cycloheximide (cyclo) at the onset of the proestrous release of gonadotropins prolongs the estrogen (E2) surge, diminishes progesterone (P4) secretion, and prevents ovulation by 0900 h of the next morning (Saidapur and Greenwald, 1981). The present study was designed to determine the effects of 0, 2, 4, or 8 mg cyclo injected at 1400 h proestrus (Day 4) on ovarian protein synthesis and other parameters. Ovulation was delayed until 1400 h estrus by 2 mg cyclo or prevented by 8 mg, and the latter treatment resulted in the death of all animals by 48 h. After 4 mg cyclo, ovulation was delayed in some animals, but the most characteristic feature was the development of large cystic follicles that ultimately transformed into corpora hemorrhagica. All animals lived after the injection of 4 mg cyclo. Ovaries collected 2, 8, 16, or 24 h after treatment were incubated with [3H]leucine for 1 h to assess the effects of cyclo on protein synthesis. Injection of phenobarbital at 1300 h proestrus, which blocks follicle-stimulating hormone (FSH) and luteinizing hormone (LH) surges, reduced ovarian protein synthesis at 1600 h to 61% of the control value. The incorporation of [3H]leucine was reduced to 75%, 37%, and 35% of the 1600-h control value by 2, 4, and 8 mg cyclo, respectively, but without affecting surge levels of FSH and LH. However, by 0600 h estrus, protein synthesis was increased significantly in all the cyclo-treated groups, which provides insight into the half-life of the compound (approximately equal to 8 h for 2-4 mg cyclo). At 1600 and 2200 h proestrus cyclo resulted in serum FSH and LH levels similar to controls, but increased serum prolactin and prolonged E2 levels at Day 4 of 2200 h and decreased serum P4 at both times. The second surge in FSH, which is in progress by 0600 h estrus, was abolished by 4 or 8 mg cyclo but not by the 2-mg dose. This is the first time for any species that ovarian protein synthesis has been measured in the proestrous normal or cyclo-treated animal. We conclude for the hamster that 4 mg cyclo is the optimal dose for blocking ovarian protein synthesis and ovulation and inducing formation of cystic follicles.  相似文献   

9.
Secretion of progesterone by granulosa cells from preovulatory follicles of mice was determined during 2 weeks of cell culture in the presence of androgens, estrogen and pituitary gonadotropins. Androstenedione (10(-7) M) and dihydrotestosterone (10(-7) M) stimulated (P less than 0.05) progesterone secretion during the first 11 days of culture. In contrast, 17 beta-estradiol (10(-11)-10(-7) M) did not alter (P greater than 0.10) progesterone secretion throughout the culture period. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) stimulated (P less than 0.01) the granulosa cells in a dose-dependent manner during the first few days of culture. This luteotropic effect was rapidly lost and at later times when FSH was not effective, LH suppressed (P less than 0.05) progesterone secretion. In the presence of prolactin (Prl) (1 microgram/ml), granulosa cells progressively secreted more progesterone during the first week of culture. After maximal stimulation on Days 7-9, progesterone secretion by Prl-treated cells began to decline, but the amount of steroid produced on Day 13 was still higher (P less than 0.05) than in control cultures. Androstenedione and Prl gave an additive effect on progesterone secretion during Days 3-5 of culture. Thereafter, the androgen, although stimulatory by itself, did not influence the luteotropic action of Prl. Unlike the early effect of androgens, 17 beta-estradiol acted synergistically with Prl to maintain maximal secretion of progesterone during the last 4 days of culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
These experiments explored the mechanism underlying FSH hypersecretion on estrous afternoon in rats injected with RU486 (RU) on proestrus. Four-day cyclic rats were injected with RU at 12:00 h on proestrus (1 or 4 mg/0.2 ml oil; s.c.), and its effects on LH and FSH secretion at 18:30 h on estrus were compared with those of antiprogestagens ZK299 (ZK) (1 or 4 mg/0.2 ml oil; s.c.) and Org31806 (OR) (2 or 8 mg/0.2 ml oil; s.c.). Additionally, rats treated with RU or nembutal (PB) (60 mg/kg; i.p. at 13:00 h on proestrus) were injected with an LHRH antagonist (LHRHa) at 10:00 h on estrus (1 mg/0.2 ml saline; s.c.) or progesterone (P) (7.7, 15.5 or 30.9 mg/0.2 ml oil; s.c.) on proestrus at 10:00 h in RU-injected rats and at 14:00 h in PB-injected rats. Animals were killed by decapitation at 18:30 h on estrus and serum LH and FSH concentrations were determined. Rats treated with 1 or 4 mg of RU or Org or 4 mg of ZK recorded increased serum FSH on estrous afternoon, while 1 mg ZK had no effect. PB increased mainly serum LH levels and, to a lesser extent, FSH levels. P decreased serum FSH concentrations in both RU- and PB-injected rats. LHRHa reversed the effects of PB on FSH secretions, but reduced FSH hypersecretion induced by RU only. These results are interpreted to mean that, in the absence of proestrous afternoon P-inhibitory action of the neural stimulus controlling LHRH release, FSH secretion on estrous afternoon involves two components: one is LHRH dependent while, in contrast to LH secretion, the other is LHRH independent, and only expressed in a low estrogen background.  相似文献   

11.
Five early-treated and four late-treated prenatally androgenized and five normal female rhesus monkeys were studied to determine whether prenatal testosterone propionate exposure beginning Gestational Days 40-44 (early-treated) or 100-115 (late-treated) affects follicular steroidogenesis during recombinant human FSH (rhFSH) treatment. All monkeys underwent rhFSH injections, without human chorionic gonadotropin administration, followed by oocyte retrieval. Serum FSH, LH, estradiol (E2), progesterone (P), 17alpha-hydroxyprogesterone (17 OHP), androstenedione (A4), testosterone, and dihydrotestosterone were measured basally during rhFSH therapy and at oocyte retrieval. Follicle fluid (FF) sex steroids, oocyte fertilization, and embryo development were analyzed. Circulating FSH, E2, 17 OHP, A4, and dihydrotestosterone levels increased similarly in all females. Serum LH levels decreased from basal levels in normal and late-treated prenatally androgenized females but were unchanged in early-treated prenatally androgenized females. Serum P levels at oocyte retrieval were comparable with those before FSH treatment in all females. All prenatally androgenized females showed reduced FF levels of A4 and E2 but not P or dihydrotestosterone. Intrafollicular T concentrations also were significantly lower in late-treated compared with early-treated prenatally androgenized females or normal females. In early-treated prenatally androgenized females, but not the other female groups, intrafollicular A4 and E2 levels were reduced in follicles containing oocytes that failed fertilization or produced zygotes with cleavage arrest before or at the five- to eight-cell embryo stage. Therefore, in monkeys receiving rhFSH therapy alone without human chorionic gonadotropin administration, early prenatal androgenization reduced FF concentrations of E2 and A4 in association with abnormal oocyte development, without having an effect on P, testosterone, or dihydrotestosterone concentrations.  相似文献   

12.
Transitional patterns of LH, FSH, and progesterone (P4) in the circulation were studied in peripubertal female golden hamsters. A daily rhythm, with afternoon surges of these hormones, is typical of the immature female, whereas 4-day rhythms characterize the estrous cycle of the adult. Blood samples were collected repeatedly from maturing individuals at either 1400 or 1700 h. Each animal was examined daily for the appearance of regular vaginal estrous cycles as indicated by a mucous exudate on the morning of ovulation. Between Days -10 and -5 relative to first vaginal estrus (FVE), afternoon surges of LH, FSH, and P4 were often observed. From Days -5 to -1 relative to FVE, afternoon surges of LH and FSH were less frequent, but P4 retained the daily rhythmicity until Day -2. A 4-day pattern of LH secretion, but not of FSH or P4, was established prior to FVE. To determine whether or not ovulations were occurring prior to the appearance of external vaginal estrous cycles, reproductive tracts were collected from 26-34 days of age and examined for evidence of ovulation. Of 124 females, concordance between the record of daily vaginal examinations and the examinations of the ovaries and oviducts was found in 103 cases (83%). The development of ovarian follicles was correlated with FVE in peripubertal hamsters by unilateral ovariectomy. Antral follicles were found only in the last 3 days prior to vaginal estrus.  相似文献   

13.
The concentrations of six steroids and of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in follicular fluid from preovulatory and large atretic follicles of normal Holstein heifers and from preovulatory follicles of heifers treated with a hormonal regimen that induces superovulation. Follicular fluid from preovulatory follicles of normal animals obtained prior to the LH surge contained extremely high concentrations of estradiol (1.1 +/- 0.06 micrograms/ml), with estrone concentrations about 20-fold less. Androstenedione was the predominant aromatizable androgen (278 +/- 44 ng/ml; testosterone = 150 +/- 39 ng/ml). Pregnenolone (40 +/- 3 ng/ml) was consistently higher than progesterone (25 +/- 3 ng/ml). In fluid obtained at 15 and 24 h after the onset of estrus, estradiol concentrations had declined 6- and 12-fold, respectively; androgen concentrations had decreased 10- to 20-fold; and progesterone concentrations were increased, whereas pregnenolone concentrations had declined. Concentrations of LH and FSH in these follicles were similar to plasma levels of these hormones before and after the gonadotropin surges. The most striking difference between mean steroid levels in large atretic follicles (greater than 1 cm in diameter) and preovulatory follicles obtained before the LH surge was that estradiol concentrations were about 150 times lower in atretic follicles. Atretic follicles also had much lower concentrations of LH and slightly lower concentrations of FSH than preovulatory follicles. Hormone concentrations in follicles obtained at 12 h after the onset of estrus from heifers primed for superovulation were similar to those observed in normal preovulatory follicles at estrus + 15 h, except that estrogen concentrations were about 6-40 times lower and there was more variability among animals for both steroid and gonadotropin concentrations. Variability in the concentrations of reproductive hormones in fluid from heifers primed for superovulation suggests that the variations in numbers of normal embryos obtained with this treatment may be due, at least in part, to abnormal follicular steroidogenesis.  相似文献   

14.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

15.
Levels of luteinizing hormone (LH), estradiol-17 beta and progesterone were determined by specific radioimmunoassays in sera obtained from Beagle bitches during proestrus, estrus and diestrus. Concentrations of LH (expressed as NIH-LH-SI equivalents) were 2.8 plus or minus 0.1 ng/ml in proestrus, 35.5 plus or minus 10.0 ng/ml during early estrus and 2.2 plus or minus 0.1 ng/ml in early diestrus. Peak levels of estradiol-17beta (68.9 plus or minus 11.0 ng/ml) were detected 24 hr prior to the LH peak, declined rapidly and reached basal levels (17.8 plus or minus 6.3 ng/ml) by five days following the LH peak. Levels of progesterone were 1.7 plus or minus 0.3 ng/ml during proestrus, 3.5 plus or minus 0.3 ng/ml during early estrus and 23.3 plus or minus 2.8 ng/ml on day 5 after the LH peak . Progesterone levels remained elevated through day 28 of diestrus and pregnancy. A significant decrease (p smaller than 0.05) in levels of prosgesterone occurred between day 28 of pregnancy and one day prior to shelping (3.3 plus or minus 1.2 ng/ml, with a further decrease on the day of whelping (1.1 plus or minus 0.2 ng/ml). Levels of estradiol-17beta and LH did not change significantly (p smaller than 0.0k) during diestrus or pregnancy.  相似文献   

16.
We investigated whether neural afferents to the medial basal hypothalamus play an acute role in the estrous phase of FSH release in the 4-day cyclic rat. A cannula was inserted into the right atrium of the heart under brief ether anesthesia during the early afternoon of proestrus for subsequent blood collections and injection of LHRH. In some of the rats, the medial basal hypothalamus was surgically isolated from the rest of the brain with a small knife under brief ether anesthesia between 2000 h and 2130 h of proestrus. Control groups consisted of naive rats which were not treated during the night of proestrus and sham-operated animals in which the knife was lowered to the corpus callosum between 2000 h and 2130 h or proestrus. Rats were bled at 2200 h of proestrus and at 0200 h, 0600 h and 1000 h of estrus for radioimmunoassay of plasma FSH and LH. The plasma FSH levels in all 3 groups between 2200 h of proestrus and 1000 h of estrus were elevated above levels observed in other cannulated rats bled to the onset of the proestrous phase of FSH release at 1400 h of proestrus. There were no statistically significant differences in plasma FSH or LH concentrations at any of the time periods between the 3 groups of serially bled rats. The deafferentation procedure did not appear to impair the pituitary gland's ability to secret gonadotrophins as injection of 50 ng of LHRH after the bleeding at 1000 h of estrus caused substantial elevations in plasma FSH and LH concentrations which were not different between the 3 groups. The results suggest that neural afferents to the medial basal hypothalamus play no acute role in the estrous phase of FSH release in the cyclic rat.  相似文献   

17.
Immature female rats were infused s.c. continuously over a 60-h period with a partially purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH activity 4.2 x NIH-FSH-S1 and luteinizing hormone (LH) activity 0.022 x NIH-LH-S1. High rates of superovulation were observed in rats receiving 1 U FSH/day, with 69 +/- 11 oocytes/rat recovered as cumulus-enclosed oocytes from oviducts on Day 1 (equivalent to the day of estrus). Addition of LH to the FSH, at dosages equivalent to 2.5-100 micrograms/day NIH-LH-S1 equivalents (2.5-100 mU) resulted in a dose-related inhibition of superovulation, reaching a nadir of 15 +/- 7 oocytes recovered from rats receiving 50 mU LH/day together with 1 U FSH/day. At the two highest LH doses, 50 and 100 mU/day, ovulation was advanced so that 12 +/- 3 and 15 +/- 4 oocytes, respectively, were recovered from oviducts of these rats flushed on the morning of Day 0, compared to none in rats infused with FSH alone. Ovarian steroid concentrations (ng/mg) observed on the morning of Day 0 in rats infused with FSH alone were progesterone, 0.50 +/- 0.13; testosterone, 0.16 +/- 0.08; androstenedione, 0.06; and estradiol, 0.23 +/- 0.05. On the morning of Day 1, ovarian progesterone concentrations in rats infused with FSH alone had risen to 3.30 +/- 0.33 ng/mg, whereas concentrations of testosterone, androstenedione, and estradiol, had fallen to essentially undetectable levels. Addition of LH to the FSH infusion resulted in dose-related increases, on Day 0, of all four steroids up to a dosage of 25 mU LH/day. At higher LH dosages, Day 0 ovarian concentrations of androgens and estradiol fell markedly, while progesterone concentrations continued to increase. Histological examination of ovaries revealed increases in the extent of luteinization of granulosa cells in follicles with retained oocytes on both Days 0 and 1 in rats infused with 25 and 50 mU LH/day together with 1 U FSH/day, compared to those observed in rats receiving FSH alone. These findings indicate that the elevated progesterone levels on Day 0 and inhibition of ovulation observed at these LH doses were due to premature luteinization of follicles, thus preventing ovulation. At lower LH doses, no sign (based on histologic or steroidogenic criteria) of premature luteinization was evident, suggesting that the decreased superovulation in these rats was due to decreased follicular maturation and/or increased atresia rather than to luteinization of follicles without ovulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Endocrine control of estrous cycle in mithun (Bos frontalis)   总被引:1,自引:0,他引:1  
The objective of the present study was to establish the profiles of luteinising hormone (LH), follicle stimulating hormone (FSH), estradiol 17beta (E2) and progesterone (P4) secretion and their interrelationships during the natural estrous cycle of mithun (Bos frontalis). Daily blood samples were collected from second or third postpartum estrous cycles for determination of plasma concentrations of LH, FSH, E2 and P4. Concentration of P4 was found to be lowest on the day of estrus. It increased following estrus, attained the highest concentration on day 11 and decreased thereafter. Concentrations of LH and FSH varied significantly (p<0.01) during the first and last 6 days of the cycle and their variations were found to be synchronised. Both LH and FSH attained a biphasic peak during the estrous cycle. This biphasic peak lasted on from day -5 to day 3 of the cycle. The variations in maximum LH and FSH concentrations of both the phases did not differ significantly. During the entire estrous cycle, the E2 concentrations attained either one peak or two peaks. The first peak, approximately on day 4 before estrus was common in all animals. One additional peak was found on the day of estrus in 45% animals. A significant (p<0.01) negative relationship was found between P4 and, LH and FSH during the first and last 6 days of cycle. But a significant (p相似文献   

19.
Cyclic hamsters hypophysectomized at estrus (Day 1 of the cycle) and injected with 5 micrograms follicle-stimulating hormone (FSH) on Day 1 and 20 micrograms luteinizing hormone (LH) in polyvinylpyrrolidone (PVP) from Days 1-4 ovulated 15.3 ova, in response to 30 IU human chorionic gonadotropin (hCG) administered at 1500 h on Day 4 (Kim and Greenwald, 1984). When 1 mg progesterone (P4) was administered daily from Days 1-4 concurrent with the above regimen, ovulation increased to 38 ova, a clearcut superovulatory response. However, daily injection of 1, 10, or 100 micrograms P4 plus FSH and LH reduced the number of antral follicles present on the afternoon of Day 4 to 3-4 per ovary, compared to 9 per ovary after FSH-LH alone, and the ovulation rate was drastically reduced with most animals being anovulatory. Substituting 1 mg 17 alpha-hydroxyprogesterone or estradiol cyclopentylpropionate for P4 on Days 1-4 did not alter the number of antral follicles on Day 4 from FSH-LH alone, whereas 1 mg androstenedione or 1 mg testosterone cyclopentylpropionate reduced the number of antral follicles to 3 or less. Hence, the stimulatory effects of 1 mg P4 are not attributable to its conversion to other P4 derivatives. After the concurrent injection of 1 mg P4 and FSH-LH, on the afternoon of Day 3, an average of only 1.8 large preantral follicles was present per ovary. By the morning of Day 4, however, the ovary contained 14 large preantral and early antral follicles in addition to 8 large antral follicles. Injection of hCG at this time resulted in the ovulation of 14.5 ova.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effect of suckling on serum and follicular fluid hormones and on follicular gonadotropin receptors was studied. Sixteen anestrous postpartum cows were assigned to 1 of 2 groups: suckled (S) or weaned (W). All calves were allowed to suckle ad libitum from parturition to 21 days postpartum when calves from W cows were weaned. All cows were ovariectomized on Day 25 postpartum. W cows had more (P less than 0.01) pulses of LH during the 96-h period from weaning until ovariectomy than S cows (6.3 vs. 1.3 pulses). Serum concentrations of prolactin (Prl), estrone (E1), estradiol-17 beta (E2) and progesterone (P) were not different (P greater than 0.10) between groups. Furthermore, there were n differences (P greater than 0.10) in follicular in contents of luteinizing hormone (LH), E1, E2 and P between the treatment groups. However, follicular fluid content of Prl was greater (P less than 0.05) in the W cows than in the S cows (123 vs. 65.1 ng/cow). The number of follicular LH receptors was greater (P less than 0.05) in the W cows than in the S cows (71.1 vs. 48.3 fmoles/mg protein) although the number of follicular follicle-stimulating hormone (FSH) receptors was not different (P greater than 0.10) between W cows and S cows (1531 vs. 1862 fmoles/mg protein). There were no correlation between serum hormone concentrations and follicular fluid hormone content; however, the numbers of follicular LH receptors and follicular fluid Prl content were highly correlated in the W cows (r = 0.85; P less than 0.05). It is concluded that removal of the suckling stimulus increases pulsatile LH release and the accumulation of Prl in the follicular fluid. These factors, either together or separately, may at least in part be responsible for the increase in follicular LH receptor concentrations that were observed in the W cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号