首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008–2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow repopulation rates observed in our study, localized depopulation may be effective at reducing negative ecological impacts of mesopredators in fragmented landscapes at limited spatial and temporal scales.  相似文献   

2.
Quantifying dispersal is fundamental to understanding the effects of fragmentation on populations. Although it has been shown that patch and matrix quality can affect dispersal patterns, standard metapopulation models are usually based on the two basic variables, patch area and connectivity. In 2004 we studied migration patterns among 18 habitat patches in central Spain for the butterfly Iolana iolas, using mark–release–recapture methods. We applied the virtual migration (VM) model and estimated the parameters of emigration, immigration and mortality separately for males and females. During parameter estimation and model simulations, we used original and modified patch areas accounting for habitat quality with three different indices. Two indices were based on adult and larval resources (flowers and fruits) and the other one on butterfly density. Based on unmodified areas, our results showed that both sexes were markedly different in their movements and mortality rates. Females emigrated more frequently from patches, but males that emigrated were estimated to move longer daily dispersal distances and suffer higher mortality than females during migration. Males were more likely to emigrate from small than from large patches, but patch area had no significant effect on female emigration. The effects of area on immigration rate and the within-patch mortality were similar in both sexes. Based on modified areas, the estimated parameter values and the model simulation results were similar to those estimated using the unmodified patch areas. One possible reason for the failure to significantly improve the parameter estimates of the VM model is the fact that resource quantity and butterfly population sizes were strongly correlated with patch area. Our results suggest that the standard VM modelling approach, based on patch area and connectivity, can provide a realistic picture of the movement patterns of I. iolas .  相似文献   

3.
ESA HUHTA  JUKKA JOKIMAKP  PEKKA RAHKO 《Ibis》1998,140(2):214-222
We studied habitat choice, distribution and reproductive success in the Pied Flycatcher Ficedula hypoleuca in relation to the spatial structure of a fragmented forest area. Two hierarchical levels of forest habitat structure were used: (1) forest patch size (macrohabitat) and (2) vegetative structure within forest patches (microhabitat). In spring, both males and females settled preferentially in large and medium-sized forest stands (>1 ha) where breeding density was also higher than in small stands (<1 ha). Stands <5 ha were occupied later, and the proportion of unpaired males was higher there than in large stands (>5 ha). The known age distributions of breeding birds and breeding success were independent of forest patch size. Nest predation rate was not associated with stand size or nest distance from the forest edge. The preference of breeding birds for large forest patches was presumably related to the higher amount of resources (nest sites, mates, food) a large patch can offer for reproduction compared with a small patch. At the microhabitat level, territories of old males were characterized by relatively more deciduous trees that contained more invertebrate food than coniferous tree-dominated territories of yearling males. The reproductive success of old males, as measured by the number of fledged young per male, was higher than that of yearling males. This suggests that the larger body size and blacker plumage of old males possibly contributed to male dominance and that old males excluded younger males from preferred habitats through territorial behaviour. Our results suggest that habitat choice of the Pied Flycatcher was affected by both micro- and macrohabitat. On the basis of settlement pattern, density and reproductive success, the distribution of Pied Flycatchers across forest stands of different sizes followed the ideal-free distribution model, whereas at the microhabitat level, age-related unequal distribution of males followed the ideal-despotic model of Fretwell and Lucas.  相似文献   

4.
Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.  相似文献   

5.
An emerging pattern is that population densities of generalist rodents are higher in small compared to large forest patches in fragmented landscapes. We used genetically based measures of migration between patches to test two dispersal-based hypotheses for this negative density-area relationship: (1) emigration rates from small patches should be relatively lower compared to large patches (“inhibited dispersal hypothesis”), or (2) immigration rates should be higher into small than large patches (“immigration hypothesis”). Neither hypothesis was supported using data on dispersal inferred from eight microsatellite loci for 12 populations of Peromyscus leucopus in six small (1.3–2.7 ha) and six large (8–150 ha) forest patches. Emigration rates were not lower from and immigration rates were not higher into small than large patches. In fact, contrary to both hypotheses, emigration rates were higher from populations of P. leucopus in small compared to large patches. Based on a combination of genetic and field data, we speculate that higher reproduction in smaller patches resulted in higher densities which led to higher emigration rates from those patches. Rates of reproduction (presumably driven by better habitat conditions in smaller patches), rather than dispersal, seems to drive density differences in forest patches. We conclude that smaller forest patches within an agricultural matrix act as a source of individuals, and that migration rates are fairly high among forest patches regardless of size.  相似文献   

6.
Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions.  相似文献   

7.
1. Long distance dispersal (LDD), or movements far beyond the occupied habitat borders, maintains the integrity of metapopulations in fragmented landscapes. Recent studies on butterflies increasingly reveal that LDD exists even in species that were long regarded as sedentary. Mark–recapture (MR) studies covering larger study areas typically reveal movements among distant colonies. 2. We studied dispersal of the EU‐protected, regionally endangered Euphydryas aurinia Rottemburg butterfly in the Czech Republic, using two complementary MR approaches. The single system study was carried out for eight seasons within 30 habitat patches covering 28 ha. The multiple populations study was carried out for a single season, but covering almost all Czech colonies of the species (82 colonies, 110 distinct patches, total area 324 ha within ca 1500 km2). 3. Single system mean lifetime movements were consistently higher for males, but slopes of dispersal kernel power functions were shallower for females, implying that higher proportions of females crossed distances of several kilometres. 4. The multiple populations study allowed detection of 51 lifetime movements exceeding 5 km (41 males, 10 females) and 14 movements exceeding 10 km (13 males, 1 female). Both mean lifetime movements and slopes of the dispersal kernels varied among systems, with no consistent pattern between sexes. All Czech Republic populations are within 0.1% movement probability of both sexes, whereas 1% movement probability delimits three separate management units. 5. Dispersal predictions from local data underestimate total mobility, warning against the use of local MR data for extrapolating long‐distance movements. Local dispersal data, however, remain useful for analysing finer details of insect mobility.  相似文献   

8.
We conducted a field experiment that manipulated landscapes by mowing so that the amount of unfavorable habitat (low cover) for prairie voles ( Microtus ochrogaster ) increased while the number and size of favorable patches (high cover) remained constant. Distance between favorable patches increased as the amount of unfavorable habitat increased, so we could test two current hypotheses concerning the effect of habitat fragmentation on local populations: 1) increased distance between favorable habitat patches reduces successful per capita dispersal (emigration and immigration) because dispersers suffer greater exposure to predators (the predation hypothesis); and 2) per capita dispersal is inversely density dependent in voles because increased aggression at higher density inhibits movements (the social fence hypothesis). As predicted by the predation hypothesis, increased distance between favorable habitat patches led to decreased successful dispersal among patches and increased per capita mortality, particularly among subadult and adult males (the categories of voles most likely to emigrate). As predicted by the social fence hypothesis, dispersal was inversely density dependent, and dispersing voles displayed a greater frequency of wounding (an indication of increased aggressive interactions) than did residents. The amount of wounding in general did not increase with density, however, and, as distance between patches increased to 60 m, successful dispersal became rare and erratic. Nevertheless, our overall results supported current hypotheses regarding the effects of increased habitat fragmentation on patterns of dispersal and mortality. Examining the impact of these effects on local population dynamics within different landscapes will require longer periods of observation.  相似文献   

9.
ABSTRACT Dispersal events can affect the distribution, abundance, population structure, and gene flow of animal populations, but little is known about long‐distance movements due to the difficulty of tracking individuals across space. We documented the natal and breeding dispersal of shrubland birds among 13 study sites in a 1000 km2 area in southeastern Ohio. In addition, we radio‐marked and tracked 37 adult males of one shrubland specialist, the Yellow‐breasted Chat (Icteria virens). We banded 1925 juveniles and 2112 adults of nine shrubland species from 2002 to 2005. Of these, 33 (1.7%) juveniles were encountered in subsequent years (2003–2006) as adults (natal dispersal) and 442 (20.9%) birds initially banded as breeding adults were re‐encountered in subsequent years (breeding dispersal). Apparent survival of juvenile shrubland birds on their natal patches was 0.024 (95% CI 0.016–0.036). After accounting for the probability of detection, we found that 21% of birds banded as juveniles and recaptured as adults returned to their natal patches, whereas 78% of adult birds showed fidelity to the patch where they were originally captured. Moreover, natal dispersers tended to move farther than breeding dispersers (corrected natal median = 1.7 km ± 0.37; corrected breeding median = 0.23 km ± 0.10). We used our estimates of natal dispersal and annual apparent survival to estimate true survival at 0.11 (95% CI 0.07–0.18) for juveniles in their first year. However, this estimate was only applicable for birds dispersing within 7 km of their natal patches. Interpatch movements of radio‐marked Yellow‐breasted Chats were not uncommon, with 13 of 37 males located in more than one habitat patch. Overall, we observed low natal philopatry, but high adult site fidelity for shrubland birds in our study area. Considering the frequency of short‐distance movements observed (median = 531 m, range = 88–1045 m), clustering of patches within 1 km might facilitate use of shrubland habitat.  相似文献   

10.
We studied population dynamics of red squirrels in a group of small forest fragments, that cover only 6.5% of the total study area (4664 ha) and where distances to the nearest source population were up to 2.2 km. We tested effects of patch size, quality and isolation and supplementary feeding on patch occupation during 1995–99. Larger patches and patches with supplementary feeding had a higher probability of being occupied. No patch <3.5 ha was ever occupied. No effects of isolation were found, suggesting that the forest habitat in the study area is not sufficiently fragmented to influence red squirrel distribution across patches. For medium sized patches (3.7–21 ha), that were occupied some years, there was an increase in patch occupation over the years, even though overall population size tended to decrease. These patches had a high turnover, especially of males. Patches in which the squirrel population went extinct were recolonized within a year. For patches that were at least some years occupied, squirrel density depended on patch quality only. No effects of patch size, isolation and winter temperature on population density were found. These data suggest that in our study area habitat fragmentation has no effect on local squirrel density and that the random sample hypothesis explains the distribution pattern across patches.  相似文献   

11.
The effects of habitat edges on nest survival of shrubland birds, many of which have experienced significant declines in the eastern United States, have not been thoroughly studied. In 2007 and 2008, we collected data on nests of 5 shrubland passerine species in 12 early successional forest patches in North Carolina, USA. We used model selection methods to assess the effect of distance to cropland and mature forest edge on nest predation rates and additionally accounted for temporal trends, nest stage, vegetation structure, and landscape context. For nests of all species combined, nest predation decreased with increasing distance to cropland edge, by nearly 50% at 250 m from the cropland edge. Nest predation of all species combined also was higher in patches with taller saplings and less understory vegetation, especially in the second year of our study when trees were 4–6 m tall. Predation of field sparrow (Spizella pusilla) nests was lower in landscapes with higher agricultural landcover. Nest predation risk for shrubland birds appears to be greater near agricultural edges than mature forest edges, and natural forest succession may drive patterns of local extirpation of shrubland birds in early successional forest patches. Thus, we suggest that habitat patches managed for shrubland bird populations should be considerably large or wide (>250 m) when adjacent to crop fields and maintained in structurally diverse early seral stages. © 2011 The Wildlife Society.  相似文献   

12.
The effects of food availability and nest predation on several life history traits such as adult survival, dispersal, and reproductive performance were assessed in an Audouin's gull (Larus audouinii) colony during the period 1992–1997. The amounts of fish discarded from trawlers were used as a measure of food availability, and a trawling moratorium which partially overlapped with the breeding season of the gulls was taken into account. The effects of nest predation were assessed in 1994, when a terrestrial predator entered the colony and remained for the whole breeding season preying on both eggs and chicks. Using the moratorium and the predatory event as natural experiments, several hypotheses were tested: (a) food supply would affect breeding performance but not adult survival (independently of age and sex), since gulls are long-lived and adult survival is the most sensitive demographic parameter in their population dynamics; (b) the predator would trigger breeding dispersal (although gulls are mostly philopatric, they are known to abandon their natal colony after breeding failure instigated by events such as this). If breeding dispersal occurs, the rate is expected to be higher in females than in males, and higher in new breeders than in more experienced breeding birds, as is usually recorded in colonial seabirds. Probabilities of resighting and survival were estimated separately, using capture-recapture models. As expected, changes in food availability did not affect adult survival, whereas they influenced egg volume, clutch size, and breeding success. Local adult survival was estimated to be 0.908 (SD = 0.007) for males and females, and it did not change significantly with the age of individuals (range 3–8 years). The predator significantly decreased breeding success, and caused the dispersal of a number of adults probably to breed in another colony; this rate was estimated at an average of 0.10 (SD = 0.02). As expected, inexperienced breeders dispersed significantly more (14%) than more experienced breeders (8%) after the predator event, but dispersal was not sex biased. Recapture probabilities after the predator event suggest that birds that left the colony still had not returned. Results confirm that population dynamics of ground-nesting seabirds are sensitive to terrestrial predation, even when predation caused only a partial breeding failure. Received: 16 July 1998 / Accepted: 16 November 1998  相似文献   

13.
Dispersal is an important influence on species' distributions, patch colonization and population persistence in fragmented habitat. We studied the impacts of habitat fragmentation resulting from establishment of an exotic pine plantation on dispersal of the marsupial carnivore, Antechinus agilis. We applied spatial analyses of individual multilocus microsatellite genotypes and mitochondrial haplotypes to study patterns of gene flow in fragmented habitat and natural habitat 'control' areas, and how this is affected by the spatial dispersion of habitat patches, the presence of corridors and a 'mainland' source of migrants. Spatial analysis of molecular variance and partial Mantel tests confirmed the absence of cryptic barriers to gene flow in continuous habitat, which if present would confound the comparison of genetic structures in fragmented vs. unfragmented habitats. Spatial genotypic structure suggested that although dispersal was male-biased in both habitat types, fragmentation restricted dispersal of males more than that of females and the degree of restriction of male dispersal was dependent on the geographical isolation of the patch. The scale of positive genotypic structure in fragmented habitat was restricted to the two closest patches for females and the three closest patches for males. Our results provide evidence for significantly increased gene flow through habitat corridors relative to that across the matrix and for significantly lower gene flow between 'mainland' unfragmented habitat and habitat patches relative to that within either habitat type, suggesting a behavioural barrier to crossing habitat interfaces.  相似文献   

14.
Populations of many species are spatially structured in matrilines, and their dynamics may be determined by matriline specific demographic processes. We examined whether the isolation of habitat patches (i.e. interpatch distance) affected the demography of matrilines in 14 experimentally fragmented populations of the root vole. Matrilines inhabiting the most isolated patches decreased in size over the breeding season, while matrilines in less isolated patches increased. The survival rate of adult females was the main factor underlying the variation in growth rates among matrilines. Low survival when patches were isolated seemed to be due to long-distance interpatch movements exposing females to increased predation rate.
The differential success of matrilines in patchy populations with variable interpatch distances acted to decrease the matrilineal diversity at the population level. Furthermore, isolated patches may function as sinks. Thus spatially explicit landscape features may affect both population demography and genetics.  相似文献   

15.
 Habitat fragmentation is becoming increasingly common, yet, the effect of habitat spatial structure on population dynamics remains undetermined for most species. Populations of a single species found in fragmented and nonfragmented habitat present a rare opportunity to examine the effect of habitat spatial structure on population dynamics. This study investigates the impact of highly fragmented habitat on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) population with a mainland-island spatial structure. Juvenile dispersal patterns in fragmented habitat revealed that individuals tended to disperse to neighboring habitat patches. However, within-patch band-sharing scores from multilocus DNA fingerprints did not differ from what would be expected if individuals were assorting randomly among habitat patches each year. Multiple, short-distance dispersal targets for juveniles and occasional long-distance dispersal events suggest that habitat fragmentation on this scale has not resulted in restricted dispersal and a genetically subdivided population. Although pikas tended to mate with the closest available partner, DNA fingerprinting band-sharing scores between mated pairs were consistent with a random mating hypothesis. Random mating in this population appears to be an incidental effect of dispersal in a fragmented habitat. This pattern is distinct from that found in nonfragmented habitat (large talus patches) where mating was non-random and consistent with mating between individuals of intermediate relatedness. DNA fingerprinting data revealed within-species variation in the mating habits of the pika directly attributable to habitat spatial structure. Received: 4 November 1996 / Accepted: 30 June 1997  相似文献   

16.
Habitat quality is one of the important factors determining population dynamics and persistence, yet few studies have examined the effects of spatial heterogeneity in within-patch habitat quality. In this paper, we use a spatially explicit agent-based model to investigate how habitat fragmentation and spatial pattern of within-patch habitat quality affect population dynamics and long-term persistence. We simulate three levels of habitat fragmentation (ranges from continuous to highly fragmented) and three types of spatial patterns in habitat quality within patches (i.e., negatively autocorrelated, randomly distributed, and positively autocorrelated). Hypothetical species differ in their niche specialization. The results demonstrate explicitly that the spatial pattern of within-patch habitat quality plays an important role in modulating the effects of habitat fragmentation on populations. Populations become less variable in size, and experience lower probability of extinction in landscapes with positively autocorrelated within-patch habitat quality. Specifically, specialized species are more vulnerable to habitat fragmentation, but this vulnerability is greatly mitigated by positively autocorrelated habitat quality within patches, in other words, exhibiting higher resistance to habitat fragmentation. The findings of this study suggest that managing habitat quality in existing habitat remnants is important to preserve species in habitats undergoing fragmentation, particularly for those with specialized habitat requirements.  相似文献   

17.
Despite its relevance for the dynamics of populations, the ecological mechanisms underlying juvenile and adult survival are poorly known in most bird species. This study focuses on the effect of habitat fragmentation on early post-fledging, first-year and adult survival of the middle spotted woodpecker Dendrocopus medius by combining data of radio-tagged and ringed birds. Among juveniles, most deaths occurred during the first three weeks after fledging (survival rate: 0.359±0.077) and were mainly caused by predation. After independence, birds faced another critical period during their first autumn-winter that lowered first-year survival further (0.255±0.044), whereas adult mortality was considerably lower (annual survival rate: 0.786±0.074). We did not find any significant effect of habitat fragmentation (measured as patch size and connectivity) on juvenile or adult survival. Sex ratio at fledging did not differ significantly from parity (proportion of females: 0.513) and was not correlated to patch size. Regardless of age, survival did not differ between the sexes, suggesting that a female-biased mortality was not the mechanism behind the presence of unpaired territorial males in this population. Lighter nestlings underwent significantly higher post-fledging mortality, indicating that conditions in the nest may substantially affect survival later in life.  相似文献   

18.
DAVID B. JACKSON 《Ibis》1994,136(4):463-473
Adult and post-natal breeding-dispersal movements of Redshank Tringa totanus , Dunlin Calidris alpina and Ringed Plover Charadrius hiaticula were quantified in west Scotland. Data from 373 returning birds marked as breeding adults and 142 returning birds marked as chicks are presented. Unlike most previous studies, this study measured dispersal movements up to 40 km and attempted to overcome distance-related biases. For each species, adult males were significantly more nest site-faithful between years than were adult females. Likewise, first-time breeding males bred significantly closer to their natal site than did females. The settlement intensity per unit area of habitat showed marked differences between species, age classes and sex in the relative attractiveness of potential areas at different distances to settling birds. Adult dispersal was negatively and significantly related to breeding success in the previous year and positively related to capture on the nest in the previous year. Dispersal movements of adult Ringed Plover breeding on unstable cultivated habitats were significantly related to habitat quality (measured in terms of nest survival) and were always to habitat of better or equal quality.  相似文献   

19.
Although open-cup nesting birds generally face increased risk of nest depredation from forest edge predators and brood parasites in fragmented temperate landscapes, little information exists to assess such risks in tropical birds. We compared nesting success of real birds' nests in large and small forest fragments to a control site in Caribbean lowland wet forest of Costa Rica. Pooling across species, nesting success was significantly greater in unfragmented forest than in either small, isolated fragments or the La Selva Biological Reserve, which is at the tip of a forest 'peninsula' embedded in a largely deforested landscape. Nesting success in isolated fragments did not vary according to distance from edge, suggesting that predators in fragments act throughout these forest patches. The case for increased nest predation as a plausible mechanism to explain the documented decline of forest interior bird populations in this fragmented tropical landscape is enhanced by a simple demographic model that suggests nesting success is likely too low to maintain populations at La Selva and in the fragments. The fact that the large (> 1000 ha) La Selva forest reserve is experiencing nest predation rates similar to those in much smaller fragments is cause for concern. Our results make a strong case for additional studies to document the identities of nest predators in both fragmented and unfragmented forests in such tropical forest landscapes.  相似文献   

20.
Variability of predation intensity is an important cause of spatial differences of community structure and organization in the intertidal rocky shore. Field experiments were conducted to evaluate the within- and between-patch variability of the effects of different types of predators (small invertebrates and birds) on Mytilus trossulus Gould, which occupies an intermediate position in the competitive hierarchy among sessile organisms in disturbance patches within a California mussel (Mytilus californianus Conrad) bed community on the central Oregon Coast. Predation by birds did not significantly affect the mortality of M. trossulus. On the contrary, predation by small invertebrate whelks (Nucella spp.) had a significant effect on M. trossulus mortality. Predation by whelks also caused between- and within-patch variability of mortality of M. trossulus. Within patches, M. trossulus mortality at patch margins was significantly higher than at patch centers only when invertebrate predators were present. Wave exposure did not cause between-patch variability of predation intensity. Between-and within-patch variability of predation intensity may be caused by the variability of supply of whelks from the surrounding mussel mat. The movement of predators between patches and surrounding matrices may play an important role in the patch dynamics of these communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号