首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Summary Active transport of potassium in K+-starvedNeurospora was previously shown to resemble closely potassium uptake in yeast,Chlorella, and higher plants, for which K+ pumps or K+/H+-ATPases had been proposed. ForNeurospora, however, potassium-proton cotransport was demonstrated to operate, with a coupling ratio of 1 H+ to 1 K+ taken inward so that K+, but not H+, moves against its electrochemical gradient (Rodriguez-Navarro et al.,J. Gen. Physiol. 87:649–674).In the present experiments, the current-voltage (I–V) characteristic of K+–H+ cotransport in spherical cells ofNeurospora has been studied with a voltage-clamp technique, using difference-current methods to dissect it from other ion-transport processes in theNeurospora plasma membrane. Addition of 5-200 M K+ to the bathing medium causes 10–150 mV depolarization of the unclamped membrane, and yields a sigmoidI–V curve with a steep slope (maximal conductance of 10–30 S/cm2) for voltages of –300 to –100 mV, i.e., in the normal physiologic range. Outside that range the apparentI–V curve of the K+-H+ symport saturates for both hyperpolarization and depolarization. It fails to cross the voltage axis at its predicted reversal potential, however, an effect which can be attributed to failure of theI–V difference method under reversing conditions.In the absence of voltage clamping, inhibitors—such as cyanide or vanadate—which block the primary proton pump inNeurospora also promptly inhibit K+ transport and K+-H+ currents. But when voltage clamping is used to offset the depolarizing effects of pump blockade, the inhibitors have no immediate effect on K+-H+ currents. Thus, the inhibition of K+ transport usually observed with these agents reflects the kinetic effect of membrane depolarization rather than any direct chemical action on the cotransport system itself.Detailed study of the effects of [K+]o and pHo on theI–V curve for K+-H+ symport has revealed that increasing membrane potential systematicallydecreases the apparent affinity of the transporter for K+, butincreases affinity for protons (K m range: for [K+]o, 15–45 M; for [H+]o, 10–35 nM). This behavior is consistent with two distinct reaction-kinetic models, in which (i) a neutral carrier binds K+ first and H+ last in the forward direction of transport, or (ii) a negatively charged carrier (–2) binds H+ first and K+ last.  相似文献   

2.
The initial response of coleoptile cells to growth hormones and light is a rapid change in plasma-membrane polarization. We have isolated protoplasts from the cortex of maize (Zea mays L.) coleoptiles to study the electrical properties of their plasma membrane by the patch-clamp techniqueUsing the whole-cell configuration and cell-free membrane patches we could identify an H+-ATPase, hyperpolarizing the membrane potential often more negative than -150 mV, and a voltage-dependent, inward-rectifying K+ channel (unit conductance 5–7 pS) as the major membrane conductan-ces Potassium currents through this channel named CKC1in (for Coleoptile K + Channel inward rectifier) were elicited upon voltage steps negative to -80 mV, characterized by a half-activation potential of -112 mV. The kinetics of activation, well described by a double-exponential process, were strongly dependent on the degree of hyperpolarization and the cytoplasmic Ca2+ level. Whereas at nanomolar Ca2+ concentrations K+ currents increased with a t1/2=16 ms (at -180 mV), higher calcium levels slowed the activation process about fourto fivefoldUpon changes in the extracellular K+ concentration the reversal potential of the K+ channel followed the Nernst potential for potassium with a 56-mV shift for a tenfold increaseThe absence of a measurable conductance for Na+, Rb+, Cs+ and a permeability ratio PNH 4 + /PK+ around 0.25 underlines the high selectivity of CKC1in for K+In contrast to Cs+, which at submillimolar concentration blocks the channel in a voltage-dependent manner, Rb+, often used as a tracer for K+, does not permeate this type of K+ channelThe lack of Rb+ permeability is unique with respect to other K+ transporters. Therefore, future molecular analysis of CKC1in, considered as a unique variation of plant inward rectifiers, might help to understand the permeation properties of K+ channels in general.Abbreviations CKC1in Coleoptile K + Channel inward rectifier - U membrane voltage - Iss steady-state currents - Itail tail currents Experiments were conducted in the laboratory of F.G. during the stay of RHas a guest professor sponsored by Special Project RAISA, subproject N2.1, paper N2155.  相似文献   

3.
The lateral leaflets of Desmodium motorium exhibit rhythmic upward and downward movements with a period in the minute range. Apoplasmic K+ and H+ activities were monitored in situ in the abaxial part of the pulvini with ion-selective microelectrodes. An extracellular electric potential was recorded simultaneously. The apoplasmic H+ activity of all pulvini exhibiting a regular rhythm of the extracellular electric potential oscillated with the same period between about 10 and 20 mM. The apoplasmic K+ activity was high when the membrane potential of the motor cells was depolarized (about 36 mV) and the cells were shrunken. In contrast, the apoplasmic K+ activity was low in the swollen state of the motor cells, when the membrane potential was hyperpolarized (about -136 mV). The volatile anesthetic enflurane suppressed reversibly the movement of the leaflets. The same treatment also arrested spontaneous oscillations in the apoplasmic K+ activity in the pulvinus. The apoplasmic K+ activity oscillated roughly in phase with the K+ activity between pH 6.6 and 6.0. Application of white light disturbed the rhythm and increased the extracellular pH. Our results indicate that the physiological mechanism that drives the lateral leaflet movements of Desmodium motorium is closely related to the osmotic motors mediating the leaf movements of Mimosa, Samanea and Phaseolus.Abbreviations Em membrane potential - Eex extracellular electric potential - Hex extracellular H+ activity - Kex extracellular K+ activity - Rex extracellular electrical resistance B. Antkowiak was supported by the Stiftung Volkswagenwerk.  相似文献   

4.
Fusicoccin (FC) has long been known to promote K+ uptake in higher plant cells, including stomatal guard cells, yet the precise mechanism behind this enhancement remains uncertain. Membrane hyperpolarization, thought to arise from primary H+ pumping stimulated in FC, could help drive K+ uptake, but the extent to which FC stimulates influx and uptake frequently exceeds any reasonable estimates from Constant Field Theory based on changes in the free-running membrane potential (V m) alone; furthermore, unidirectional flux analyses have shown that in the toxin K+ (86Rb+) exchange plummets to 10% of the control (G.M. Clint and E.A.C. MacRobbie 1984, J. Exp. Bot.35 180–192). Thus, the activities of specific pathways for K+ movement across the membrane could be modified in FC. We have explored a role for K+ channels in mediating these fluxes in guard cells ofVicia faba L. The correspondence between FC-induced changes in chemical (86Rb+) flux and in electrical current under voltage clamp was followed, using the K+ channel blocker tetraethylammonium chloride (TEA) to probe tracer and charge movement through K+-selective channels. Parallel flux and electrical measurements were carried out when cells showed little evidence of primary pump activity, thus simplifying analyses. Under these conditions, outward-directed K+ channel current contributed appreciably to charge balance maintainingV m, and adding 10 mM TEA to block the current depolarized (positive-going)V m; TEA also reduced86Rb+ efflux by 68–80%. Following treatments with 10 M FC, both K+ channel current and86Rb+ efflux decayed, irreversbly and without apparent lag, to 10%–15% of the controls and with equivalent half-times (approx. 4 min). Fusicoccin also enhanced86Rb+ influx by 13.9-fold, but the influx proved largely insensitive to TEA. Overall, FC promotednet cation uptake in 0.1 mM K+ (Rb+), despite membrane potentials which were 30–60 mVpositive of the K+ equilibrium potential. These results tentatively link (chemical) cation efflux to charge movement through the K+ channels. They offer evidence of an energy-coupled mechanism for K+ uptake in guard cells. Finally, the data reaffirm early suspicions that FC alters profoundly the K+ transport capacity of the cells, independent of any changes in membrane potential.Abbreviations and symbols E K equilibrium potential for K+ - FC fusicoccin - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - G m membrane (slope) conductance atV m - I-V current-voltage (relationship) - apparent rate constant for exchange - K i + , K 0 + intracellular, extracellular K+ (concentration) - TEA tetraethylammonium chloride - V m free-running membrane potential (difference)  相似文献   

5.
H. Lühring 《Protoplasma》1986,133(1):19-28
Summary The cytoplasmic drop formed of effused cytoplasm fromChara internodes is enclosed by a membrane. Patch clamp experiments have been carried out on this membrane, revealing a K+ channel as the most frequently detected ion translocator. The K+ channel is saturated at a level of about 20 pA inward and 10 pA outward current. The channel conductance is dependent on the accessability of K+ ions, its maximum value amounts to about 165 pS. The discrimination of Na+ and Cl is significant, permeability ratios PNa/PK and PCl/PK were estimated to be 0.01 either. Binding experiments with the fluorescent probe concanavalin A/FITC suggest that the membrane is derived from the tonoplast.Abbreviations EK K+ equilibrium potential - FITC fluorescein isothiocyanat - Vm membrane voltage - Vpip pipette clamp voltage - Vr reversal voltage  相似文献   

6.
Summary Voltage-clamped steps in the electric potential difference (PD) across the membrane in cells of the green alga,Chara inflata, cause voltage- and time-dependent current flows, interpreted to arise from opening and closing of various types of ion channel in the membrane. With cells in the light, these channels are normally closed, and the resting PD is probably determined by the operation of an H+ efflux pump. Positive steps in PD from the resting level often caused the opening of K+ channels with sigmoid kinetics. The channels began to show opening when the PD–120 mV for an external concentration of K+ of 1.0mm. Return of the PD to the resting level caused closing of the channels with complex kinetics. Various treatments of the cell could cause these K+ channels to open, and remain open continuously, with the PD then lying closer to the Nernst PD for K+. The K+ channels have been identified by the blocking effects of TEA+. Another group of channels, probably Cl and Ca2+ associated with the action potential open when the PD is stepped to values less negative than –50 mV. Negative steps from the resting PD cause the slow opening, with a time course of seconds, of yet another type of channel, probably Cl.  相似文献   

7.
Summary Chlorophyll fluorescence, plasmalemma potential and resistance were measured simultaneously and subjected to a kinetic analysis. It was found that the light-induced changes of all three signals have two time constants in common. The faster one (4=ca. 20 sec) was assigned to the action of light-induced proton uptake across the thylakoid membrane on the plasmalemma H+ pump. The slower one (5a=40 sec) is related to the light action of an unknown photosynthetic process on the potassium channel. The action on the K+ channel was revealed from the reversal potential of the related effect on membrane potential. The comparison of the data with findings of other authors led to the hypothesis that the unknown photosynthetic mechanism is the depletion of NADP+, which stimulates the uptake of Ca2+ from the cytosol, which is required for the NAD-kinase. The resulting change in cytosolic Ca2+ modulates the number of open K+ channels.  相似文献   

8.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

9.
Plant roots accumulate K+ over a range of external concentrations. Root cells have evolved at least two parallel plasma-membrane K+ transporters which operate at millimolar and micromolar external [K+]: high-affinity K+ uptake is energised by symport with H+, while low-affinity uptake is assumed to occur via ion channels. To determine the role of ion channels in low-affinity K+ uptake, a characterisation of the principal K+-selective ion channels in the plasma membrane of Arabidopsis thaliana (L.) Heynh. cv. Columbia roots was undertaken. Two classes of K+-selective channels were frequently observed: one inward (IRC) and one outward (ORC) rectifying with unitary conductances of 5 pS, 20 pS (IRCs) and 15 pS (ORC), measured in symmetrical 10 mM KCl. The dominant IRC (5 pS) and ORC (15 pS) were highly cation-selective (PCl PK < 0.025) but less selective amongst monovalent cations (PNaPK0.17–0.3). Both the IRC and the ORC were blocked by Ba2+, Cs+ and tetra-ethyl-ammonium, whereas 4-aminopyridine and quinidine selectively inhibited the ORC. The ORC open probability was steeply voltage-dependent and ORC activation potentials were close to the potassium equilibrium potential (EK+), enabling ORCs to conduct mainly outward, but occasionally inward, K+ current. By contrast, gating of the 5-pS IRC was weakly voltageependent and IRC gating was invariably restricted to membrane potentials more negative than EK+, ensuring K+ transport was always inwardly directed. Studies on channel activity were conducted for a large number of root cells grown at two levels of external [K+], one where K+ uptake is likely to be principally through channels (6 mM K+) and one where it must be energised (100 M K+). Shifting growth conditions from high to low K+ did not affect single-channel properties such as conductance and selectivity, nor the manifestation of the ORC and 20-pS IRC, but led to enhanced activity of the 5-pS IRC. The enhanced activity of the 5-pS IRC was mirrored by a parallel increase in unidirectional 86Rb+ influx after low-K+ growth, clearly indicating a dominant role of this particular channel in K+ uptake at supra millimolar external [K+].Abbreviations EK+ potassium equilibrium potential - Em membrane potential - HK high [K+] - IRC inward rectifying channel - LK low [K+] - ORC outward rectifying channel - TEA tetra-ethyl-ammonium Financial support was provided by the Biotechnology and Biological Sciences Research Council (Grant PG87/529) and by the European Union (Framework III, Biotechnology Programme).  相似文献   

10.
Summary Membrane fragments containing the H+K-ATPase from parietal cells have been adsorbed to a planar lipid membrane. The transport activity of the enzyme was determined by measuring electrical currents via the capacitive coupling between the membrane sheets and the planar lipid film. To initiate the pump currents by the ATPase a light-driven concentration jump of ATP from caged ATP was applied as demonstrated previously for Na+K+-ATPase (Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985.EMBO J. 4:3079–3085). Since H+K+-ATPase is an electroneutrally working enzyme no stationary pump currents were observed in the presence of K+. By separation of the H+ and K+ transport steps of the reaction cycle, however, the electrogenic step of the phosphorylation could be measured. This was achieved in the absence of K+ or at low concentrations of K+. The observed transient current is ATP dependent which can be assigned to the proton movement during the phosphorylation. From this it was conclueded that the K+ transport during dephosphorylation is electrogenic, too, in contrast to the Na+K+-ATPase where the K+ step is electroneutral. The transient current was measured at different ionic conditions and could be blocked by vanadate and by the H+K+-ATPase specific inhibitor omeprazole. An alternative mechanism for activation of this inhibitor is discussed.  相似文献   

11.
Gibberellic acid (GA3) stimulates K+ efflux from the barley (Hordeum vulgare L. cv. Himalaya) aleurone. We investigated the mechanism of K+ flux across the plasma membrane of aleurone protoplasts using patch-clamp techniques. Potassium-ion currents, measured over the entire surface of the protoplast plasma membrane, were induced when the electrochemical gradient for K+ was inward (into the cytoplasm). The magnitude and voltage-dependence of this inward current were the same in protoplasts treated with GA3 and in control protoplasts (no GA3). Inward currents activated by negative shifts in the membrane potential (EM) from the Nernst potential for K+ (EK) showed membrane conductance to be a function of the electrochemical gradient (i.e. EM-EK). Single-channel influx currents of K+ were recorded in small patches of the plasma membrane. These channels had a single-channel conductance of 5–10 pS with 100 mM K+ on the inside and 10 mM K+ on the outside of the plasma membrane. Single-channel currents, like whole-cell currents, were the same in protoplasts treated with GA3 and control protoplasts. Voltage-gated efflux currents were found only in protoplasts tha thad been incubated without GA3. We conclude that K+ influx in the aleurone is mediated by channels and these membrane proteins are not greatly effected by GA3.Abbreviations and symbols FK Nernst potential for K+ - EM membrane potential - Erev reversal potential - GA3 gibberellic acid - Ki concentration of K+ inside the cell - Ko concentration of K+ outside the cell - R gas constant - S conductance (siemens) - T temperature (oK) - i ionic activity coefficient for internal (cytoplasmic) solution - o ionic activity coefficient for external medium  相似文献   

12.
Summary The membrane of mechanically prepared vesicles ofChara corallina has been investigated by patch-clamp techniques. This membrane consists of tonoplast as demonstrated by the measurement of ATP-driven currents directed into the vesicles as well as by the ATP-dependent accumulation of neutral red. Addition of 1mm ATP to the bath medium induced a membrane current of about 3.2 mA·m–2 creating a voltage across the tonoplast of about –7 mV (cytoplasmic side negative). On excised tonoplast patches, currents through single K+-selective channels have been investigated under various ionic conditions. The open-channel currents saturate at large voltage displacements from the equilibrium voltage for K+ with limiting currents of about +15 and –30 pA, respectively, as measured in symmetric 250mm KCl solutions. The channel is virtually impermeable to Na+ and Cl. However, addition of Na+ decreases the K+ currents. TheI–V relationships of the open channel as measured at various K+ concentrations with or without Na+ added are described by a 6-state model, the 12 parameters of which are determined to fit the experimental data.  相似文献   

13.
In carp erythrocytes, noradrenaline (10-6 mol·l-1) induces a 30- to 40-fold activation of Na+/H+ exchange (the ethylisopropylamiloride-inhibited component of the 22Na influx) and a fourfold stimulation of the Na+, K+ pump (ouabain-inhibited component of 86Rb influx). In both cases the effect of noradrenaline is blocked by propranolol but not phentolamine and is imitated by forskolin. An activator of protein kinase C (-phorbol 12-myristate, 13-acetate) increases Na+/H+ exchange by 10 times and decreases the Na+, K+ pump activity by 20–30 percent. In the presence of ethylisopropylamiloride the increment of the Na+, K+ pump activity induced by noradrenaline is reduced by 35–45 percent, indicating the existence of a Na+/H+ exchange-independent mechanism of the Na+, K+ pump regulation by -adrenergic catecholamines. Hypertonic shrinkage of carp erythrocytes results in a 40- to 80-fold activation of Na+/H+ exchange, whereas hypotonic swelling induces an increase in the rate of 86Rb+ efflux which is inhibited by furosemide by about 30–40 percent. The rate of pH0 recovery in response to acidification or alkalinization in rat erythrocytes is approximately 15 times as fast as in carp erythrocytes. Unlike in rat erythrocytes, valinomycin does not cause an alkalinization of incubation medium in carp erythrocytes indicating the absence of conductive pathway in the operation of anion transporter protein. A scheme is suggested which describes the interrelation of Na+/H+ exchange, Na+, K+ pump and a non-identified system providing for K+ efflux in cell swelling, regulation of cell volume and cytoplasmic pH in fish erythrocytes under conditions of deep hypoxia and high activity.Abbreviations cAMP cyclic adenosine monophosphate - CCCP carbonylcyamide m-chlorophenylhydrazone - DMSO dimethylsulphoxide - EIPA ethylisopropylamiloride - NA noradrenaline - PMA -phorbol 12-myristate, 13-acetate - RVD regulatory volume decrease - RVI regulatory volume increase  相似文献   

14.
Summary InNitella cells with low pump activity, the electrical characteristics of membrane transport are mainly determined by K+ transport. Current-voltage curves were measured at outside K+ concentrations ranging from 0.1 to 100 mol m–3. Above 1 mol m–3, current saturated at positive and at very negative potentials. It was found that theseI–V curves could be fitted by a Class 1, case 1 reaction kinetic model, which is a cyclic reaction scheme with one pair of rate constants sensitive to membrane potential (Class I) and neutral transporter (or electrically charged substrate-transporter complex, case I). The analysis revealed the relative rate constants of a 3-state model. From the linear dependence of the rate constant of substrate binding (k 32) on [K+] a the stoichiometry of 1 K+/cycle was obtained. The complex transporter substrate is very unstable (very high value ofK 23) resulting in a very low density of this state and in what can be called Mitchellian behavior; namely, the driving forces resulting from the electrical and from the concentration gradient can hardly be distinguished.  相似文献   

15.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

16.
Employing a simple one-step sucrose gradient fractionation method, gastric mucosal membrane of Syrian hamster was prepared and demonstrated to be specifically enriched in H+,K+-ATPase activity. The preparation is practically devoid of other ATP hydrolyzing activity and contains high K+-stimulated ATPase, activity of at least 4–5 fold compared to basal ATPase activity. The H+,K+-ATPase showed hydroxylamine-sensitive phosphorylation and K+-dependent dephosphorylation of the phospho-enzyme, characteristic inhibition by vanadate, omeprazole and SCH 28080, and nigericin-reversible K+-dependent H+-transport — properties characteristic of gastric proton pump One notable difference with H+,K+-ATPase of other species has been the observation of valinomycin-independent H+ transport in such membrane vesicles. It is proposed that such H+,K+-ATPase-rich hamster gastric mucosal membrane preparation might provide a unique model to study physiological aspects of H+,K+-ATPase-function in relation to HCl secretion.  相似文献   

17.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

18.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

19.
Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney. Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England  相似文献   

20.
Summary Membrane-permeant weak acids and bases, when applied to the bath, modulate the resting membrane potential and the glucose-induced electrical activity of pancreatic B cells, as well as their insulin secretion. These substances alter the activity of a metabolite-regulated. ATP-sensitive K+ channel which underlies the B-cell resting potential. We now present several lines of evidence indicating that the channel may be directly gated by pH i . (1) The time course of K+(ATP) channel activity during exposure to and washout of NH4Cl under a variety of experimental conditions, including alteration of the electrochemical gradient for NH4Cl entry and inhibition of the Na o + H i + exchanger, resembles the time course of pH i measured in other cell types that have been similarly treated. (2) Increasing pH o over the range 6.25–7.9 increases K+(ATP) channel activity in cell-attached patches where the cell surface exposed to the bath has been permeabilized to H+ by the application of the K+/H+ exchanger nigericin. (3) Increasing pH i over a similar range produces similar effects on K+(ATP) channels in inside-out excised patches exposed to small concentrations of ATP i . The physiological role of pH i in the metabolic gating of this channel remains to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号