首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differences in the rate and extent of degradation of ribonucleic acid (RNA) labeled by a 30-sec pulse in aerobically or anaerobically grown Rhodopseudomonas spheroides have been studied by using rifampin to block RNA synthesis. In anaerobic cultures, unstable RNA is degraded with a half-life of 1.25 to 2.0 min, and about 40% of the pulse-labeled RNA is stable. In aerobic cultures, the half-life of unstable RNA is increased to 2.5 to 4.0 min, and 50% of the RNA is stable. When aerobic cultures are transferred to anaerobic conditions, there is a rapid drop in half-life and in the proportion of stable RNA. When anaerobic cultures are made aerobic, the reverse changes occur after a lag of about 30 min. Addition of puromycin to either aerobic or anaerobic cultures caused the pulse-labeled RNA to be degraded at the same rate and to the same extent as the RNA in an anaerobic control culture. In contrast, addition of chloramphenicol enhanced the difference in RNA half-life and increased the proportion of stable RNA by about 10% in each case. It is concluded that there is a difference in the stability of an RNA component under aerobic and anaerobic conditions.  相似文献   

2.
Protein accumulation and protein synthesis were investigated during anaerobic stress and heat shock in maize seedlings (Zea mays L.). Antibodies against alcohol dehydrogenase (ADH) and cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) were used to investigate the expression of the genes encoding these proteins during stress treatment. ADH1 protein accumulation is shown to increase about 10-fold in the root after 24 hours of anaerobic treatment. The Gpc gene products are separable into two size classes: the slow mobility GAPC1 and GAPC2 (GAPC1/2), and the faster GAPC3 and GAPC4 (GAPC3/4). The GAPC1/2 antigen did not increase at all, whereas the GAPC3/4 antigen increased less than fourfold. The proteins synthesized in the root during aerobic and anaerobic conditions were compared, and GAPC3/4 was identified as an anaerobic polypeptide. In vitro translations were used to estimate the levels of different mRNAs in roots following anaerobiosis, recovery from anaerobiosis, and heat shock. This was compared with the in vivo protein synthesis rates in roots labeled under identical conditions. In vivo labeling indicates that GAPC and ADH are not heat shock proteins. Although both GAPC3/4- and ADH1-translatable mRNA levels increase about 10-fold during anaerobiosis, in vivo labeling of these proteins (relative to total protein synthesis) is further enhanced, leading to a selective translation effect for ADH1 of threefold, and for GAPC3/4 of sixfold. In contrast, anoxia causes no change in GAPC1/2-translatable mRNA levels or in vivo labeling. As an additional comparison, β-glucosidase mRNA levels are found to be constant during anoxia, but in vivo synthesis decreases.  相似文献   

3.
Abstract Aerobically germinated seedlings of rice and Echinochloa were found to survive when placed in an anaerobic environment for 4 d, whereas pea and maize seedlings did not. Although root and shoot growth were inhibited in rice and Echinochloa under anaerobiosis, growth resumed when the seedlings were returned to aerobic conditions. Alcohol dehydrogenase (ADH) activity increased more, and protein synthesis was greater, in the shoots than in the roots under anaerobic conditions. These results suggest that, in anaerobiosis-tolerant species, ADH activity and protein synthesis in the shoots represents or results from metabolic adaptations to low oxygen. These results are discussed in terms of plant establishment and growth in a low-oxygen environment.  相似文献   

4.
The pattern of protein synthesis was compared in several organs of maize (Zea mays L.) under aerobic and anaerobic conditions. Protein synthesis was measured by [35S]methionine incorporation and analysis by two-dimensional native-SDS (sodium lauryl sulfate) polyacrylamide gel electrophoresis and fluorography. The aerobic protein-synthesis profiles were very different for root, endosperm, scutellum and anther wall. However, except for some characteristic qualitative and quantitative differences, the patterns of protein synthesis during anaerobiosis were remarkably similar for these diverse organs and also for mesocotyl and coleoptile. The proteins synthesized were the anaerobic polypeptides (ANPs) which have been previously described in anaerobic roots of seedlings. Leaves exhibited no detectable protein synthesis under anaerobic conditions, and died after a short anaerobic treatment. Evidence is presented that the ANPs are not a generalized response to stress. This indicates that the ANPs are synthesized as a specific response to anaerobic conditions such as flooding.Abbreviations ADH alcohol dehydrogenase - ANP anaerobic polypeptide - SDS sodium lauryl sulfate  相似文献   

5.
The synthesis of ribonucleic acid (RNA) and of protein in Escherichia coli during glucose-lactose diauxie lag have been examined. The rate of RNA synthesis is about 7%, of the corresponding rate during exponential growth and the rate of protein synthesis 10 to 15%. Inhibition of RNA synthesis occurs to the same extent in both rel and rel(+) strains. The RNA which accumulates during 20 min in diauxie lag is composed of about 50% ribosomal and transfer RNA species and about 50% of a fraction which resembles messenger RNA (mRNA) in its heterogeneous sedimentation properties. Decay of the heterogeneous fraction occurs in the presence of glucose and actinomycin D with a half-life of 3 min, the same as that of pulse-labeled mRNA; however, during the diauxie lag, the half-life of this RNA is about 25 min. Accumulation of the heterogeneous RNA is further increased when protein synthesis is blocked by chloramphenicol. The data suggest that the disproportionate accumulation of mRNA during diauxie lag and energy source shift-down may be attributed at least in part to increased stability of mRNA, but do not rule out a preferential synthesis of mRNA.  相似文献   

6.
The isolation of a new class of mutants permitting facultative anaerobiosis in Neurospora crassa is described. Backcross analyses to the obligate aerobe prototroph (An -) indicate single nuclear gene inheritance (An -/An +). An + and An - are indistinguishable in morphology and growth rates under aerobic conditions. Anaerobic growth requires nutritional supplements that are dispensable for aerobic growth. Conidiogenesis, conidial germination, and vegetative growth rate are suppressed by anaerobiosis. An + mutants produce substantial quantities of ethanol under anaerobic conditions. Anaerobiosis and chloramphenicol both affect mitochondrial enzyme activity and morphology. Chloramphenicol inhibition leads to reduction in cytochrome oxidase and swollen mitochondria with few cristae. Anaerobiosis leads to reduction in both cytochrome oxidase and malate dehydrogenase activities, enlarged mitochondria with fewer cristae, enlarged nuclei, and other alterations in cellular morphology. The fine structure of anaerobically grown cells changes with the time of anaerobic growth. We conclude that either inhibition of mitochondrial membrane synthesis or inhibition of respiration might lead to the observed alterations in mitochondria.  相似文献   

7.
The manganese-containing isozyme of superoxide dismutase (MnSOD) is synthesized by Escherichia coli only during aerobiosis, in accordance with the fact that superoxide can be formed only in aerobic environments. In contrast, E. coli continues to synthesize the iron-containing isozyme (FeSOD) even in the absence of oxygen. A strain devoid of FeSOD exhibited no deficits during either anaerobic or continuously aerobic growth, but its growth lagged for 2 h during the transition from anaerobiosis to aerobiosis. Complementation of this defect with heterologous SODs established that anaerobic SOD synthesis per se is necessary to permit a smooth transition to aerobiosis. The growth deficit was eliminated by supplementation of the medium with branched-chain amino acids, indicating that the growth interruption was due to the established sensitivity of dihydroxyacid dehydratase to endogenous superoxide. Components of the anaerobic respiratory chain rapidly generated superoxide when exposed to oxygen in vitro, suggesting that this transition may be a period of acute oxidative stress. These results show that facultative bacteria must preemptively synthesize SOD during anaerobiosis in preparation for reaeration. The data suggest that evolution has chosen FeSOD for this function because of the relative availability of iron, in comparison to manganese, during anaerobiosis.  相似文献   

8.
Summary Saccharomyces cerevisiae H 1022 was cultivated in batch and continuous culture on a glucose substrate. The yeast was subjected to a sudden change from aerobic to anaerobic growth conditions by switching the inlet-gas stream from air to dinitrogen. The dynamics of growth and product formation during the periods of adaptation were studied. A structured growth model based on Monod-Blackman-kinetics was applied to simulate these shift-experiments. The immediate switch of the yeast to maximum anaerobic growth and ethanol production predicted by this model was confirmed very well in the chemostat-experiments. However, a slow adaptation was evident for the switch from anaerobiosis back to aerobiosis.Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim, Federal Republic of Germany  相似文献   

9.
Summary A class of ompA mutants of Escherichia coli, exhibiting temperature-sensitive resistance towards phages using the OmpA protein as receptor, was analysed. The mutants produce detectable levels of the protein at 42°C but not at 30°C (Manning and Reeves 1976). They were found to have a deletion (one isolate) or insertions (three isolates) upstream of the coding part of the ompA gene. Several previously characterized mutants possessing insertions or a deletion in the non-translated 5 area of the gene also exhibited a similar temperature-sensitive phage resistance. This cold-sensitive phenotype is explained in terms of the recent discovery that the stability of ompA mRNA is regulated by the rate of cell growth (Nilsson et al. 1984).  相似文献   

10.
11.
When cells of Chlorella vulgaris absorb copper under anaerobic conditions, subsequent respiration, photosynthesis and growth of the cells are all severely inhibited. This does not occur when the metal is absorbed under aerobic conditions. When, after aerobic absorption of copper, the cells are exposed to a period of anaerobiosis, respiratory inhibition is as profound as when the uptake is anaerobic. In this case, however, respiration must eventually recover, for growth is not affected so severely as it is when copper is taken up under anaerobic conditions. It is concluded that the extra copper absorbed under anaerobic conditions is directly or indirectly responsible for the greatly increased toxicity to growth, and that this copper is bound to sites not normally available under aerobic conditions. Some aspects of the apparently unique toxic effect of copper suggest that these extra sites are sulphydryl groups.  相似文献   

12.
Petra R. Moog 《Planta》1998,207(2):189-198
Young Carex extensa Good., C. remota L. and C. pseudocyperus L. plants were subjected to aerobic or anaerobic growth conditions in nutrient solution for 40 d. Root anatomy was studied by serial transsections and longitudinal sections of the root tip. Under both growth conditions, the flooding-intolerant C. extensa developed the typical Carex root pattern, i.e. an intact cortex in the youngest part of the root, but lysogenous aerenchyma in maturing parts. In contrast, flooding-tolerant C. remota from periodically flooded habitats showed a similar root anatomy to C. extensa under aerobic conditions, but a cortex with fine intercellular spaces throughout most of the root under anaerobic conditions. The flooding-tolerant C. pseudocyperus from permanently flooded stands developed an intact cortex over most of the root length under both growth conditions. Fine intercellular spaces on four sides of each cortical cell penetrated into the very tip of the root in this species, connecting the whole root with the lacunae of the leaves and the atmosphere. In both flooding-tolerant species, morphometry showed that even under anaerobic growth conditions and despite the maintenance of a juvenile growth habit, i.e. intact cortical cells, the average root porosities were more than 20% and there was an increase in the contact area between intercellular gas spaces and the surface of cortical cells. While C. remota showed radial oxygen loss along the whole root length, C. pseudocyperus released oxygen to an oxygen-free medium only at the root tip. It is concluded that the maintenance of a juvenile root structure in combination with a system of fine intercellular spaces allows efficient nutrient uptake and plant growth during anaerobiosis in flooding-tolerant Carex species, in contrast to those species which may tolerate periods of anaerobiosis by forming aerenchyma at the cost of decreased nutrient uptake and growth. Received: 10th February 1998 / Accepted: 2nd July 1998  相似文献   

13.
Bier  Karlheinz 《Chromosoma》1965,16(1):58-69
Summary The influence of O2-deprivation and reduction of temperature on the incorporation of the RNA-precursors 3H-uridine und 3H-cytidine is investigated in various tissues of the larvae and in the ovaries of adults of the housefly Musca domestica L. While RNA-synthesis in most of the tissues is strongly reduced under anaerobic conditions, synthesis continues in a moderate extent in muscle cell nuclei and nurse cell nuclei. The RNA-macromolecules (mRNA and rRNA), however, do not migrate into the cytoplasma. RNA-synthesis within the cell nucleus is less affected by a sudden reduction of temperature than the passage of RNA through the nuclear membrane which is reduced to a very low rate. The macromolecular RNA, therefore, does not diffuse into the cytoplasma but is transported actively through the nuclear envelope. The malformations caused by anaerobiosis during embryogenesis are brought in connexion with the active RNA-transport through the nuclear envelope and the separation of transport and synthesis.

Herrn Professor Dr. Hans Bauer zum 60. Geburtstag gewidmet.

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

14.
We isolated Mu dI1734 insertion mutants of Klebsiella pneumoniae that were unable to assimilate nitrate or nitrite as the sole nitrogen source during aerobic growth (Nas- phenotype). The mutants were not altered in respiratory (anaerobic) nitrate and nitrite reduction or in general nitrogen control. The mutations were linked and thus defined a single locus (nas) containing genes required for nitrate assimilation. beta-Galactosidase synthesis in nas+/phi(nas-lacZ) merodiploid strains was induced by nitrate or nitrite and was inhibited by exogenous ammonia or by anaerobiosis. beta-Galactosidase synthesis in phi(nas-lacZ) haploid (Nas-) strains was nearly constitutive during nitrogen-limited aerobic growth and uninducible during anaerobic growth. A general nitrogen control regulatory mutation (ntrB4) allowed nitrate induction of phi(nas-lacZ) expression during anaerobic growth. This and other results suggest that the apparent anaerobic inhibition of phi(nas-lacZ) expression was due to general nitrogen control, exerted in response to ammonia generated by anaerobic (respiratory) nitrate reduction.  相似文献   

15.
To explain the requirement for anaerobic conditions in the induction of biodegradative L-threonine dehydratase in Escherichia coli, Crookes strain, measurements of cyclic AMP (cAMP) were made during aerobic and anaerobic growth and upon an aerobic-to-anaerobic transition. Internal cAMP levels were similar (5 to 10 muM) throughout exponential growth, whether aerobic or anaerobic, but only during anaerobiosis was threonine dehydratase synthesized. When an exponentially growing aerobic culture was made anaerobic, a sharp increase in internal cAMP was noted, reaching 300 muM within 10 min and declining thereafter to normal anaerobic levels. Threonine dehydratase synthesis was detected immediately after the attainment of peak cAMP levels and continued for several generations. A similar pattern but with less accumulation of cAMP and less threonine dehydratase production was also noted upon treatment of an aerobically growing culture with KCN. Pyruvate addition at the time of anaerobic shock severely affected both cAMP accumulation and threonine dehydratase synthesis; however, externally added cAMP could partially counter the pyruvate effect on enzyme synthesis. The conclusion was reached that conditions which resulted in a temporary energy deficit brought about the major accumulation of cAMP, and this elevated level served as a signal for initiation of threonine dehydratase synthesis to supply energy by the nonoxidative degradation of threonine.  相似文献   

16.
AParacoccus sp. which transforms aniline and different halogen-substituted derivatives under aerobic and anaerobic conditions was isolated from the soil. In experiments with14C-ring-labeled 4-chloroaniline, approximately 60% of the radioactive material disappeared from the growth medium after incubation under anaerobiosis within 48 hr, but under aerobic conditions no decrease of radioactivity in the growth medium was observed, although 4-chloroaniline was completely metabolized. Acetylation appears to constitute, especially under aerobic conditions, a major transformation mechanism by the bacterium, since almost 50% of the acetylated compound could be detected and identified if aniline, 2-, 3-, and 4-chloroaniline served as substrate. The formation of different metabolites under aerobic and anaerobic conditions clearly indicates the existence of two separate pathways in the metabolism of aniline compounds depending on the oxygen status of the environment.  相似文献   

17.
Previous work has established that the N57I amino acid replacement in iso-1-cytochrome c from the yeast Saccharomyces cerevisiae causes an unprecedented increase in thermodynamic stability of the protein in vitro, whereas the N57G replacement diminishes stability. Spectrophotometric measurements of intact cells revealed that the N57I iso-l-cytochrome c is present at higher than normal levels in vivo. Although iso-1-cytochrome c turnover is negligible during aerobic growth, transfer of fully derepressed, aerobically grown cells to anaerobic growth conditions leads to reduction in the levels of all of the cytochromes. Pulsechase experiments carried out under these anaerobic conditions demonstrated that the N57I iso-l-cytochrome c has a longer half-life than the normal protein. This is the first report of enhanced stability in vivo of a mutant form of a protein that has an enhanced thermodynamic stability in vitro. Although the N57I protein concentration is higher than the normal level, reduced growth in lactate medium indicated that the specific activity of this iso-l-cytochrome c in vivo is diminished relative to wild-type. On the other hand, the level of the thermodynamically labile N57G iso-1-cytochrome c was below normal. The in vivo levels of the N57I and N57G iso-l-cytochrome c suggest that proteins in the mitochondrial intermembrane space can be subjected to degradation, and that this degradation may play a role in controlling their normal levels.  相似文献   

18.
Anaerobic metabolism in the limnic annelid Hirudo medicinalis L. was investigated by direct and indirect calorimetry. During long-term severe hypoxia, the rate of heat dissipation was reduced up to 13% of the aerobic rate. At the same time, the rate of ATP turnover was reduced to about 30% of the aerobic rate, indicating that metabolic depression is an important mechanism to ensure survival of the leech during environmental anaerobiosis. Heat dissipation during hypoxia was monitored under two experimental conditions, favouring either concomitant hypocapnia (continuous N2 bubbling) or hypercapnia (self-induced hypoxia). The reduction in heat dissipation during hypocapnic hypoxia was less pronounced than during hypercapnic hypoxia, indicating that the different experimental conditions may influence anaerobic metabolism and the extent of metabolic depression. Biochemical analysis of known anaerobic substrates and endproducts provided the basis for indirect calorimetry during self-induced hypoxia. From changes in metabolites, the expected heat dissipation was calculated for initial (0–8 h) and long-term severe hypoxia (8–72 h). During the initial period, the calculated heat dissipation fully accounted for direct calorimetric determination. During long-term hypoxia, only 71% of the measured heat production could be explained from biochemical analysis of metabolites. Therefore, an additional unknown endproduct cannot be excluded, especially when anaerobic ammonia production and analysis of the carbohydrate balance are considered.Abbreviations APW artificial pond water - HPLC high-performance liquid chromatography - fw fresh weight - HP heat production - HD heat dissipation - MR metabolic rate  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号