首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fujisaki K  Tanabe N  Suzuki N  Mitsui N  Oka H  Ito K  Maeno M 《Life sciences》2006,78(17):1975-1982
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.  相似文献   

2.
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575–582, 1986). The present study shows that there is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates. There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the genetic level.  相似文献   

3.
Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor-1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death. IGFBP-5 could in turn prevent the effects of PAI-1. IGFBP-5 mutants with reduced affinity for IGF-I (N-term) or deficient in heparin binding (HEP- and C-term E and F) were also effective. This was surprising because IGFBP-5 reportedly interacts with PAI-1 via its heparin-binding domain. Biosensor analysis confirmed that, although wild-type IGFBP-5 and N-term both bound to PAI-1, the C-term E had greatly decreased interaction with PAI-1. This suggests that IGFBP-5 does not antagonize the actions of PAI-1 by a direct molecular interaction. In a cell-free system, using tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) to activate plasminogen, PAI-1 inhibited plasmin generation induced by both activators, whereas IGFBP-5 prevented the effects of PAI-1 on tPA but not uPA. Furthermore, we noted that IGFBP-5 activated plasminogen to a greater extent than could be explained solely by inhibition of PAI-1, suggesting that IGFBP-5 could directly activate tPA. Indeed, IGFBP-5 and the C-term E and F were all able to enhance the activity of tPA but not uPA. These data demonstrate that IGFBP-5 can enhance the activity of tPA and that this can result in cell death induced by cleavage of focal adhesions. Thus IGFBP-5 can induce cell death by both sequestering IGF-I and enhancing plasmin generation.  相似文献   

4.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

5.
Abstract: Patients with diabetes are predisposed to microvascular disease. In the retina and brain, this is characterized by neovascularization and new capillary formation. Because of the potential importance of plasmin generation in these processes, we evaluated the effect of elevated glucose concentrations on expression of plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and urokinase (uPA) in cultured bovine brain endothelial cells (BBEC) versus cultured bovine aortic endothelial cells (BAEC). We observed that BBEC PAI-1 mRNA levels were decreased fivefold in cells cultured in media containing 20 m M glucose compared with BBEC cultured in media with 5.5 m M glucose, whereas expression of PAI-1 mRNA in BAEC, bovine mesenteric endothelial cells, and human umbilical vein endothelial cells was not modulated under these conditions. Expression of PAI-1 protein was also inhibited by growth of BBEC in elevated glucose, but the effect was less marked than at the mRNA level. Elevated glucose did not decrease expression of PAI-1 protein by BAEC. Withdrawal of acidic fibroblast growth factor enhanced expression of PAI-1 mRNA and protein in BBEC. Expression of tPA mRNA was not affected by the glucose concentration of the medium, and uPA mRNA was not detected in our BBEC cultures. A decrease in the local tissue activity of PAI-1 by elevated glucose concentrations, with no effect on tPA or uPA expression, would lead to an increase in the plasmin activity and thereby predispose neural tissues, such as the cerebrum and retina, of diabetic patients to neovascularization.  相似文献   

6.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

7.
Human cervical epithelial cells transfected and immortalized with human papillomavirus type 16 DNA (HCE16/3) can be, like many other epithelial cells, normally grown in medium supplemented with epidermal growth factor, cholera toxin, hydrocortisone, insulin, transferrin, thyroid hormone and serum. We found that hydrocortisone diminished tissue plasminogen activator (tPA) production to an undetectable level. The removal of hydrocortisone increased urokinase plasminogen activator (uPA) activity within 24-48 h and tPA activity within 48-72 h, and converted the cells to a more elongated and fibroblastic phenotype. Upregulation of uPA mRNA was seen as early as at 3 h and of tPA mRNA within 48-72 h. Higher molecular weight forms (97-110 kDa) of plasminogen activators were seen in zymograms, apparently complexed with PAI-1, starting at 6 h both in the presence and absence of hydrocortisone. Immunoprecipitation with a PAI-1 monoclonal antibody confirmed that both uPA and tPA were complexed. We also studied normal diploid human bronchial epithelial cells (NHBE) and NHBE cells transformed with an adeno-12/SV40 hybrid virus (BEAS-2B). In both types of nonmalignant epithelial cells, the removal of hydrocortisone increased uPA activity. The omission of hydrocortisone increased tPA levels significantly in BEAS-2B cell cultures, and in NHBE cell cultures tPA became detectable at 72 h. No PA complexes were seen in these two cell types. We conclude that normal and immortalized nonmalignant epithelial cells produce tPA, but only if hydrocortisone is omitted in the growth medium.  相似文献   

8.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

9.
Decreased degradation of the glomerular extracellular matrix (ECM) is thought to contribute to the accumulation of glomerular ECM that occurs in diabetic nephropathy and other chronic renal diseases. Several lines of evidence indicate a key role for the plasminogen activator/plasminogen/plasmin system in glomerular ECM degradation. However, which of the two plasminogen activators (PAs) present in renal tissue, tissue plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA), is responsible for plasmin generation and those factors that modulate the activity of this system remain unclear. This study utilized mesangial cells isolated from mice with gene deletions for tPA, uPA, and plasminogen activator inhibitor 1 (PAI-1) to further delineate the role of the PA/plasminogen/plasmin system in ECM accumulation. ECM degradation by uPA-null mesangial cells was not significantly different from controls (92% +/- 1%, n = 12). In contrast, ECM degradation by tPA-null mesangial cells was markedly reduced (-78 +/- 1%, n = 12, P < 0.05) compared with controls, whereas tPA/uPA double-null mesangial cells degraded virtually no ECM. Previous studies from this laboratory have established that transforming growth factor-beta1 (TGFbeta1) inhibits ECM degradation by cultured mesangial cells by increasing the production of PAI-1, the major physiological PA inhibitor. In keeping with this observation, TGFbeta1 (1 ng/ml) had no effect on ECM degradation by PAI-1-null MC. High glucose levels (30 mM) in the presence or absence of insulin (0.1 mM) caused a moderate increase in ECM degradation by normal human mesangial cells. In contrast, glycated albumin, whose concentration is known to increase in diabetes, produced a dose-dependent (0.2-0.5 mg/ml) inhibition of ECM degradation by normal human mesangial cells. Taken together, these results document the importance of tPA versus uPA in renal plasmin production and indicate that in contrast to elevated glucose, glycated albumin may contribute to ECM accumulation in diabetic nephropathy.  相似文献   

10.
Human neuronal brain cultures established from 12- and 14-week-old fetuses synthesize and secrete urokinase-type plasminogen activator (uPA) and limited amounts of tissue-type plasminogen activator (tPA). These cells also produce and secrete the endothelial cell-type PA inhibitor (PAI-1), which forms sodium dodecyl sulfate-stable tPA/PAI-1 complexes in the culture medium. Immunocytochemistry shows a predominant localization of uPA, tPA, and PAI-1 in neuronal cells, with only a very weak positivity detectable in the few glial cells present in these cultures. The protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulates the synthesis of both uPA and PAI-1, resulting in a final increase in the plasmin-generating capacity of neuronal cell cultures. No significant effect is observed, however, when cells are treated with the TPA analogue 4 alpha-phorbol 12,13-didecanoate, which is inactive as a PKC inducer, or with the neurotrophic polypeptide basic fibroblast growth factor. These data represent the first characterization of the plasmin-generating system in human fetal brain neurons and suggest a role for PKC in the modulation of uPA and PAI-1 synthesis.  相似文献   

11.
Cultured keratinocytes resemble migrating keratinocytes under conditions of reepithelialization during wound healing. Such keratinocytes express urokinase-type plasminogen activator (uPA) and its specific receptor (uPA receptor). Receptor-bound uPA activates plasminogen, thus providing plasmin for pericellular proteolysis. uPA is regulated by the plasminogen activator inhibitors PAI-1 and PAI-2. As indicated by immunohistology, neither uPA nor uPA receptor is expressed in normal epidermis. Thus, the down-regulation of uPA and uPA-receptor expression in keratinocytes appears to be an important event in epidermal healing and restoration of a normal epidermal tissue architecture. We have addressed this matter by using a culture and differentiation system for keratinocytes in vitro. Keratinocytes were grown in organotypic cocultures for 4, 7, and 14 days. Frozen sections were analyzed with indirect immunofluorescence staining and overlay zymography, the latter detecting activity of plasminogen activators. While tPA and PAI-I stainings were consistently negative over the entire observation period, uPA and uPA receptor were expressed by basal keratinocytes at Days 4 and 7, but not at Day 14. Accordingly, overlay zymography revealed uPA activity at Days 4 and 7. PAI-2 was found throughout the entire observation period, but with varying distribution: at Days 4 and 7 all suprabasal keratinocytes stained positive for PAI-2. At Day 14, PAI-2-specific stainings were confined to the uppermost cells of the stratum spinosum. Our data demonstrate that uPA and uPA receptor, which are up-regulated in cultured keratinocytes, are down-regulated upon restoration of an epidermis-like structure. The distribution of PAI-2 varied over the observation period and at Day 14 resembled the distribution of PAI-2 in normal epidermis. Taken together, keratinocytes in organotypic coculture behave like keratinocytes in healing wounds in vivo with respect to the expression of the plasminogen activator system.  相似文献   

12.
Skin extracellular matrix (ECM) molecules regulate a variety of cellular activities, including cell movement, which are central to wound healing and metastasis. Regulated cell movement is modulated by proteases and their associated molecules, including the serine proteases urinary-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and their inhibitors (PAIs). As a result of wounding and loss of basement membrane structure, epidermal keratinocytes can become exposed to collagen. To test the hypothesis that during wounding, exposed collagen, the most abundant ECM molecule in the skin, regulates keratinocyte PA and PAI gene expression, we utilized an in vitro model in which activated keratinocytes were cultured in dishes coated with collagen or other ECM substrates. tPA, uPA, and PAI-1 mRNA and enzymatic activity were detected when activated keratinocytes attached to fibronectin, vitronectin, collagen IV, and RGD peptide. In contrast, adhesion to collagen I and collagen III completely suppressed expression of PAI-1 mRNA and protein and further increased tPA expression and activity. Similarly, keratinocyte adhesion to laminin-1 suppressed PAI-1 mRNA and protein expression and increased tPA activity. The suppressive effect of collagen I on PAI-1 gene induction was dependent on the maintenance of its native fibrillar structure. Thus, it would appear that collagen- and laminin-regulated gene expression of molecules associated with plasminogen activation provides an additional dimension in the regulation of cell movement and matrix remodeling in skin wound healing.  相似文献   

13.
Adipose tissue expresses a variety of genes including tumor necrosis factor alpha and type-1 plasminogen activator inhibitor (PAI-1); and these factors, produced by adipocytes, may be associated with the risk of coronary events in obesity. In this study, we characterized the production of fibrinolytic factors including tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PAI-1 in the differentiation of preadipocytes, and examined the hormonal regulation of these fibrinolytic factors in mature adipocytes. Mouse 3T3-L1 preadipocytes were employed as a model of adipocytes. Adipocyte differentiation was induced by insulin, dexamethasone, and 3-isobutyl-1-methyl xanthine (IBMX). alpha-Glycerophosphate dehydrogenase (GPDH) activity and glucose transporter 4 (GLUT4) mRNA, indices for adipocyte maturation, were induced on Day 4, and gradually increased. GPDH activity reached its maximum level on Day 14. The level of tPA, a major PA in preadipocytes, dramatically decreased with differentiation. On the other hand, that of uPA reciprocally increased. PAI-1 production was also dramatically induced concomitant with differentiation. In mature adipocytes, uPA production was dominant (25 microg/ml/24 h vs. 0.8 microg/ml/24 h for tPA). Total PA activity in the mature adipocytes was reduced by insulin or dexamethasone, but not by glucagon. Insulin, IBMX, and dexamethasone significantly decreased both uPA and tPA production, and increased PAI-1 production. Glucagon had no effect on the production of these fibrinolytic factors. Our results reveal that uPA is one of the markers for the differentiation of 3T3-L1 cells and that insulin, IBMX, and dexamethasone are potent regulators of the fibrinolytic activity in differentiated 3T3-L1 cells, reciprocally affecting PA and PAI-1 levels in them.  相似文献   

14.
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of the serine proteases tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). To systematically investigate the roles of the reactive center P1 and P1' residues in PAI-1 function, saturation mutagenesis was utilized to construct a library of PAI-1 variants. Examination of 177 unique recombinant proteins indicated that a basic residue was required at P1 for significant inhibitory activity toward uPA, whereas all substitutions except proline were tolerated at P1'. P1Lys variants exhibited lower inhibition rate constants and greater sensitivity to P1' substitutions than P1Arg variants. Alterations at either P1 or P1' generally had a larger effect on the inhibition of tPA. A number of variants that were relatively specific for either uPA or tPA were identified. P1Lys-P1'Ala reacted 40-fold more rapidly with uPA than tPA, whereas P1Lys-P1'Trp showed a 6.5-fold preference for tPA. P1-P1' variants containing additional mutations near the reactive center demonstrated only minor changes in activity, suggesting that specific amino acids in this region do not contribute significantly to PAI-1 function. These findings have important implications for the role of reactive center residues in determining serine protease inhibitor (serpin) function and target specificity.  相似文献   

15.
Plasminogen activator inhibitor type-1 (PAI-1) is a major inhibitor of fibrinolysis by virtue of its capacity to inhibit urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). Systemic inflammation is invariably associated with elevated circulating levels of PAI-1, and during human sepsis plasma PAI-1 concentrations predict an unfavorable outcome. Knowledge about the functional role of PAI-1 in a systemic inflammatory response syndrome is highly limited. In this study, we determined the role of endogenous PAI-1 in cytokine release induced by administration of LPS or staphylococcal enterotoxin B (SEB). Both LPS and SEB elicited secretion of PAI-1 into the circulation of normal wild-type (Wt) mice. Relative to Wt mice, PAI-1 gene-deficient (PAI-1(-/-)) mice demonstrated strongly elevated plasma IFN-gamma concentrations after injection of either LPS or SEB. In addition, PAI-1(-/-) splenocytes released more IFN-gamma after incubation with LPS or SEB than Wt splenocytes. Both PAI-1(-/-) CD4+ and CD8+ T cells produced more IFN-gamma upon stimulation with SEB. LPS-induced IFN-gamma release in mice deficient for uPA, the uPA receptor, or tPA was not different from IFN-gamma release in LPS-treated Wt mice. These results identify a novel function of PAI-1 during systemic inflammation, where endogenous PAI-1 serves to inhibit IFN-gamma release by a mechanism that does not depend on its interaction with uPA/uPA receptor or tPA.  相似文献   

16.
促性腺激素诱导猕猴排卵周期中卵巢纤溶酶...   总被引:3,自引:1,他引:2  
刘以训  邹如金 《生理学报》1991,43(5):472-479
Changes of plasminogen activator (PA) and its inhibitor (PAI-1) activity and antigen have been investigated during PMSG/hCG induced ovulation in rhesus monkeys. It has been demonstrated that the ovarian tissue type PA (tPA) activity, which reaches maximum prior to ovulation and declines thereafter, is closely related to follicular rupture; significant increases in urokinase type PA (uPA) only occurs in granulosa cells after ovulation. Since the secretory activity of ovarian PAI-1 reaches its peak level 12-24 h earlier than tPA the rapid decrease in PAI-1 activity in the approach of ovulation is correlated with the elevation of tPA activity. It is, therefore, suggested that a counterbalance of tPA and PAI-1 activity within the ovary may play an important role in the ovulation mechanism, whereas uPA may be involved in the regulation of corpus luteum formation.  相似文献   

17.
Transforming growth factor beta (TGF beta) treatment of rat osteoblast-rich calvarial cells or of the clonal osteogenic sarcoma cells, UMR 106-01, resulted in dose-dependent inhibition of plasminogen activator (PA) activity, and increased production of 3.2 kb mRNA and protein for PA inhibitor -1 (PAI-1). Although tissue-type PA (tPA) protein was not measured, TGF beta did not influence production of mRNA for tPA. Production of 2.3 kb mRNA for urokinase-type PA (uPA) was also increased by TGF beta in a dose-dependent manner. The effects of TGF beta on synthesis of mRNA for PAI-1 and uPA were maintained when protein synthesis was inhibited, and were abolished by inhibition of RNA synthesis. Although uPA had not been detected previously as a product of rat osteoblasts, treatment of lysates of osteoblast-like cells with plasmin yielded a band of PA activity on reverse fibrin autography, corresponding to a low Mr form of uPA. Untreated conditioned media from normal osteoblasts or UMR 106-01 cells contained no significant TGF beta activity, but activity could be detected in acidified medium. Treatment of conditioned media with plasmin resulted in activation of approximately 50% of the TGF beta detectable in acidified media. The results identify several effects of TGF beta on the PA-PA inhibitor system in osteoblasts. Net regulation of tPA activity through the stimulatory actions of several calciotropic hormones and the promotion of PAI-1 formation by TGF beta could determine the amount of osteoblast-derived TGF beta activated locally in bone. Stimulation of osteoblast production of mRNA for uPA could reflect effects on the synthesis of sc-uPA, a precursor for the active form of the enzyme.  相似文献   

18.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

19.
Accumulation and deposition of Aβ is one of the main neuropathological hallmarks of Alzheimer's disease (AD) and impaired Aβ degradation may be one mechanism of accumulation. Plasmin is the key protease of the plasminogen system and can cleave Aβ. Plasmin is activated from plasminogen by tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). The activators are regulated by inhibitors which include plasminogen activator inhibitor-1 (PAI-1) and neuroserpin. Plasmin is also regulated by inhibitors including α2-antiplasmin and α2-macroglobulin. Here, we investigate the mRNA levels of the activators and inhibitors of the plasminogen system and the protein levels of tPA, neuroserpin and α2-antiplasmin in post-mortem AD and control brain tissue. Distribution of the activators and inhibitors in human brain sections was assessed by immunoperoxidase staining. mRNA measurements were made in 20 AD and 20 control brains by real-time PCR. In an expanded cohort of 38 AD and 38 control brains tPA, neuroserpin and α2-antiplasmin protein levels were measured by ELISA. The activators and inhibitors were present mainly in neurons and α2-antiplasmin was also associated with Aβ plaques in AD brain tissue. tPA, uPA, PAI-1 and α2-antiplasmin mRNA were all significantly increased in AD compared to controls, as were tPA and α2-antiplasmin protein, whereas neuroserpin mRNA and protein were significantly reduced. α2-macroglobulin mRNA was not significantly altered in AD. The increases in tPA, uPA, PAI-1 and α2-antiplasmin may counteract each other so that plasmin activity is not significantly altered in AD, but increased tPA may also affect synaptic plasticity, excitotoxic neuronal death and apoptosis.  相似文献   

20.
Sesamol is a component in the nutritional makeup of sesame that was identified as an antioxidant. In recent years, the importance of the plasminogen activator (PA) and its adjustment factor, plasminogen activator inhibitor-1 (PAI-1), in the prevention of atherosclerosis has gradually received recognition. The objective of this in vitro study was to demonstrate the effects of sesamol on PA and PAI-1. We also compared the effects of sesamol with two well-known antioxidants, vitamins C and E, by using human umbilical vein endothelial cells as an experimental model and by treating them with the above-mentioned three nutrients with doses up to 100 micromol/L. After 24 h, cells and cultural medium were collected for analysis. The concentrations of tissue PA (tPA), urokinase PA (uPA) and PAI-1 were measured by an enzymatic immunity method. Northern blot method was used to analyze the expression of mRNA of these three types of proteins. The results showed that sesamol increased the production of uPA and tPA significantly and also up-regulated the mRNA expressions of these proteins. On the other hand, vitamins C and E could induce tPA but not uPA. As for PAI-1, none of the nutrients induced any evident response. These findings suggest that the overall vascular fibrinolytic capacity may be enhanced by using sesamol to regulate PA gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号