首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of sperm-egg recognition in mammals is mediated primarily by the zona pellucida surrounding ovulated eggs. Mouse sperm are quite promiscuous and bind to human eggs, but human spermatozoa will not bind to mouse eggs. The mouse zona pellucida contains three glycoproteins, ZP1, ZP2, and ZP3, which are conserved in rat and human. The recent observation that human zonae pellucidae contain a fourth protein raises the possibility that the presence of four zona proteins will support human sperm binding. Using mass spectrometry, four proteins that are similar in size and share 62-70% amino acid identity with human ZP1, ZP2, ZP3, and ZP4/ZPB were detected in rat zonae pellucidae. However, although mouse and rat spermatozoa bind to eggs from each rodent, human sperm bind to neither, and the presence of human follicular fluid did not alter the specificity of sperm binding. In addition, mutant mouse eggs lacking hybrid/complex N-glycans or deficient in Core 2 O-glycans were no more able to support human sperm binding than normal mouse eggs. These data suggest that the presence of four zona proteins are not sufficient to support human sperm binding to rodent eggs and that additional determinants must be responsible for taxon-specific fertilization among mammals.  相似文献   

2.
In this investigation, the interaction of mouse sperm with unfertilized eggs and embryos, solubilized zonae pellucidae isolated from eggs and embryos, and purified zona pellucida glycoproteins ZP1, 2, and 3 (J. D. Bleil, and P. M. Wassarman, (1980b) Dev. Biol. 76, 185-202) has been examined in vitro by light and electron microscopy. The experiments described were carried out in order to determine the temporal sequence of events during sperm-egg interaction in vitro and to identify the component(s) of zonae pellucidae responsible for inducing mouse sperm to undergo the acrosome reaction. "Pulse-chase" analysis of the sequence of sperm-egg interactions revealed that mouse sperm first "attach" loosely and then "bind" tightly to the unfertilized egg's zona pellucida. Binding of sperm to egg zonae pellucidae is followed by induction of the acrosome reaction. Induction of the acrosome reaction can be mediated by the zona pellucida, since solubilized zonae pellucidae isolated from unfertilized eggs were found to be just as effective as the calcium ionophore A23187 in inducing the reaction in vitro. Furthermore, ZP3 purified from zonae pellucidae isolated from unfertilized eggs, but not from two-cell embryos, was also just as effective as either solubilized zonae pellucidae from eggs or ionophore A23187 in inducing the acrosome reaction. ZP1 and 2 from both eggs and embryos, and ZP3 from embryos, had little effect on the extent of the acrosome reaction as compared to control samples. The results of these and other experiments (J. D. Bleil, and P. M. Wassarman, (1980b) Cell 20, 873-882) strongly suggest that, at least in vitro, mouse sperm recognize and bind to ZP3 of egg zonae pellucidae, and that such binding leads to the induction of the acrosome reaction. Modification of ZP3 following fertilization eliminates sperm binding to zonae pellucidae and, consequently, induction of the acrosome reaction is precluded.  相似文献   

3.
The hamster egg's extracellular coat, or zona pellucida, consists of three glycoproteins, designated hZP1, hZP2, and hZP3, that exhibit extensive heterogeneity on SDS-PAGE. hZP1 is a relatively minor component of hamster zonae pellucidae, as compared with hZP2 and hZP3. In the presence of reducing agents, hZP1, 200,000 apparent Mr, migrates on SDS-PAGE with an apparent Mr of 103,000. This suggests that hZP1, like mouse ZP1, is composed of two polypeptides held together by intermolecular disulfides. When purified hamster ZP glycoproteins were tested at relatively low concentrations in an in vitro competition assay, employing either hamster or mouse gametes, only hZP3 (56,000 apparent Mr) exhibited sperm receptor activity (i.e., inhibited binding of sperm to eggs). Thus, apparently hZP3 is the hamster counterpart of mouse ZP3, the mouse egg receptor for sperm. Furthermore, at relatively high concentrations, solubilized hamster egg ZP preparations induced both hamster and mouse sperm to undergo the acrosome reaction in vitro. hZP3 is encoded by a relatively abundant ovarian mRNA that is detected by a mouse ZP3 cDNA probe and is the same size, about 1.5 kb, as mRNA encoding the mouse sperm receptor, ZP3 (83,000 apparent Mr). Like mouse ZP2, hZP2 undergoes limited proteolysis following artificial activation of hamster eggs in vitro. Results of in vitro assays employing intact eggs and isolated zonae pellucidae demonstrate that hamster eggs possess a ZP2-proteinase which has a substrate specificity similar to that of the mouse enzyme. These observations are discussed in terms of structural and functional relationships that may exist between hamster and mouse zona pellucida glycoproteins.  相似文献   

4.
The mammalian zona pellucida is an extracellular matrix surrounding the oocyte, and is composed of three major glycoproteins, ZP1, ZP2, and ZP3. Previous studies have suggested that the sperm receptor activity of the zona pellucida resides in specific oligosaccharide chains on the ZP3 glycoprotein. However, the nature of the terminal monosaccharide(s) on these glycosidic chains to which sperm bind is a matter of active debate. Evidence has been presented to support a role for at least three distinct monosaccharides in sperm binding, alpha-galactose, L-fucose on Lewis X structures, and beta-N-acetylglucosamine. Previous studies have shown that beta-N-acetylglucosamine is uniformly distributed throughout the zona matrix. In this study, we have investigated the expression and distribution of alpha-galactose and fucose moieties during the maturation of the zona pellucida in mouse, rat, and hamster. Interestingly, alpha-galactose residues are expressed only during later stages of zona secretion and, consequently, are confined to the inner portions of the mature zona pellucida in mouse and rat. In hamster, alpha-galactose residues are only detectable in the zona pellucida of ovulated eggs, and are not found in ovarian oocytes. Fucosyl residues linked to Lewis X glycosides are not detectable at any stage of zona maturation in these three species, whereas fucose linked to N-linked core oligosaccharides are present throughout the zona. These studies indicate a previously unappreciated heterogeneity in the composition of zona glycosides. The specific localization of alpha-galactose residues to the inner portions of the zona matrix suggest a role in the later stages of sperm penetration through the zona. Finally, due to their absence from the zona surface, alpha-galactose and Lewis X fucosyl residues are not likely to be mediators of primary sperm binding.  相似文献   

5.
Three glycoproteins (ZP1, ZP2, and ZP3) are synthesized in growing mouse oocytes and secreted to form an extracellular zona pellucida that mediates sperm binding and fertilization. Each has a signal peptide to direct it into a secretory pathway, a "zona" domain implicated in matrix polymerization and a transmembrane domain from which the ectodomain must be released. Using confocal microscopy and enhanced green fluorescent protein (EGFP), the intracellular trafficking of ZP3 was observed in growing mouse oocytes. Replacement of the zona domain with EGFP did not prevent secretion of ZP3, suggesting the presence of trafficking signals and a cleavage site in the carboxyl terminus. Analysis of linker-scanning mutations of a ZP3-EGFP fusion protein in transient assays and in transgenic mice identified an eight-amino-acid hydrophobic region required for secretion and incorporation into the zona pellucida. The hydrophobic patch is conserved among mouse zona proteins and lies between a potential proprotein convertase (furin) cleavage site and the transmembrane domain. The cleavage site that releases the ectodomain from the transmembrane domain was defined by mass spectrometry of native zonae pellucidae and lies N-terminal to a proprotein convertase site that is distinct from the hydrophobic patch.  相似文献   

6.
Proteolytic processing of human zona pellucida proteins.   总被引:3,自引:0,他引:3  
Formation of the egg's extracellular matrix, the zona pellucida, is critical for fertilization and development of growing embryos. Zona pellucida glycoproteins, ZP1, ZP2, and ZP3, are secreted to form an insoluble extracellular matrix surrounding mammalian eggs. All cloned mammalian zona pellucida sequences contain a furin consensus cleavage site, RX(K)/(R)R, upstream of a putative transmembrane domain, which suggests processing by an endoprotease of the furin-proprotein-convertase family. Recombinant expression of human (h) ZP1, ZP2, and ZP3 produces glycoproteins that are secreted and have migration patterns in SDS-PAGE identical to those of native human zona pellucida proteins. Because a C-terminal epitope tag that is present in the cell-associated zona proteins is, however, absent from the secreted zona proteins, secreted recombinant zona pellucida proteins lack their C-terminal regions. Three different strategies were used to explore processing events in the C-terminal region: site-directed mutagenesis of the furin cleavage site, treatment with a competitive inhibitor of all furin family members, and interference with Golgi modifications by Brefeldin A. All treatments altered the SDS-PAGE migration of recombinant hZP3, concordant with cleavage by a furin family member and Golgi glycosylation of secreted hZP3. Furthermore, cleavage of cell-associated hZP3 by exogenous furin converts the migration of cell-associated hZP3 to that of secreted hZP3. To determine whether a similar cleavage pattern exists in zona pellucida proteins that are assembled in the zona matrix, "hZP3 rescue" mouse zonae pellucidae were employed. Immunoblotting experiments revealed that hZP3, assembled and functional in the "hZP3 rescue" mouse zona pellucida, lacks the furin cleavage site, supporting the hypothesis that formation of the zona pellucida matrix involves regulated proteolysis by a member of the furin convertase family.  相似文献   

7.
Sperm-egg interaction in mammals is initiated by binding of sperm to the zona pellucida, an acellular coat completely surrounding the plasma membrane of unfertilized eggs and preimplantation embryos. Fertilization results in transformation of the zona pellucida (“zona reaction”), such that additional sperm are unable to bind to the zona pellucida of fertilized eggs and embryos, and sperm that had partially penetrated the zona pellucida of eggs prior to fertilization are prevented from further penetration after fertilization. The failure of sperm to bind to fertilized mouse eggs and embryos is attributable to modification of the sperm receptor, ZP3, an 83,000-molecular weight glycoprotein present in zonae pellucidae isolated from both eggs and embryos [Bleil, J. D., and Wassarman, P. M. (1980). Cell, 20, 873–882]. In this investigation, ZP2, the major glycoprotein found in mouse zonae pellucidae [Bleil, J. D., and Wassarman, P. M. (1980). Develop. Biol., 76, 185–202] was analyzed by gel electrophoresis under a variety of conditions in order to determine whether or not it undergoes modification as a result of fertilization. Under nonreducing conditions, ZP2 present in solubilized zonae pellucidae that were isolated individually from mouse oocytes, eggs, and embryos migrates on SDS-polyacrylamide gels with an apparent molecular weight of 120,000. However, under reducing conditions, ZP2 from embryos, but not from oocytes or unfertilized eggs, migrates with an apparent molecular weight of 90,000 and has been designated ZP2f. The evidence presented suggests that modification of ZP2 following fertilization involves proteolysis of the glycoprotein, but that intramolecular disulfide bonds prevent the release of peptide fragments. It is shown that the same change in ZP2 can be generated in vitro by artificial activation of unfertilized mouse eggs with the calcium ionophore A23187, thus eliminating the possibility that a sperm component is responsible for the modification of ZP2 following fertilization. These results suggest that some of the changes in the biochemical and biological properties of zonae pellucidae, observed following fertilization or activation of mouse eggs, result from modification of the major zona pellucida glycoprotein, ZP2.  相似文献   

8.
The zona pellucida is an acellular coat which surrounds the plasma membrane of fully grown mammalian oocytes and which performs a variety of important functions during oogenesis, fertilization, and preimplantation development. In this investigation the proteins of the mouse oocyte's zona pellucida have been identified and characterized by using zonae pellucidae isolated individually from fully grown oocytes with mouth-operated micropipets. Various morphological and biochemical criteria were employed to assess the purity of the isolated zonae pellucidae and, in most cases, they were found to be virtually free of contamination by other oocyte proteins. It was determined that each zona pellucida contains 4.8 ng of protein, which represents 80% or more of the dry weight of the zona pellucida and about 17% of the oocyte's total protein. Electrophoretic analyses of as few as five isolated zonae pellucidae treated with diazotized [125I]iodosulfanilic acid revealed the presence of only three radiolabeled proteins, designated ZP1, ZP2, and ZP3. The same three proteins were identified by Coomassie blue staining when large numbers of isolated zonae pellucidae (approximately 750) were subjected to SDS-polyacrylamide gel electrophoresis. These three proteins migrate as broad bands on SDS-polyacrylamide gels, consistent with their being glycoproteins, with apparent molecular weights of 200,000 (ZP1), 120,000 (ZP2), and 83,000 (ZP3). The same proteins were radiolabeled when intact oocytes were treated with diazotized [125I]iodosulfanilic acid, a reagent which does not penetrate the oocyte's plasma membrane, or when isolated zonae pellucidae were treated with 3H-labeled 1-dimethylaminonaphthalene-5-sulfonyl chloride. Results of amino acid analysis and high-resolution two-dimensional electrophoresis of the individual proteins suggest that each protein represents a unique polypeptide chain. The proteins ZP1, ZP2, and ZP3 represent about 36, 47, and 17%, respectively, of the total protein of the zona pellucida. In the presence of reducing agents which cause dissolution of the zona pellucida, ZP1 is converted into a species which migrates with an apparent molecular weight of 130,000, suggesting that it exists as an oligomer, stabilized by disulfide bonds, in the unreduced state. The results of these experiments are discussed in terms of the properties of the zona pellucida before and after fertilization and are compared with results obtained using vitelline envelopes of eggs from nonmammalian animal species.  相似文献   

9.
The zona pellucida is an extracellular matrix consisting of three glycoproteins that surrounds mammalian eggs and mediates fertilization. The primary structures of mouse ZP1, ZP2, and ZP3 have been deduced from cDNA. Each has a predicted signal peptide and a transmembrane domain from which an ectodomain must be released. All three zona proteins undergo extensive co- and post-translational modifications important for secretion and assembly of the zona matrix. In this report, native zonae pellucidae were isolated and structural features of individual zona proteins within the mixture were determined by high resolution electrospray mass spectrometry. Complete coverage of the primary structure of native ZP3, 96% of ZP2, and 56% of ZP1, the least abundant zona protein, was obtained. Partial disulfide bond assignments were made for each zona protein, and the size of the processed, native protein was determined. The N termini of ZP1 and ZP3, but not ZP2, were blocked by cyclization of glutamine to pyroglutamate. The C termini of ZP1, ZP2, and ZP3 lie upstream of a dibasic motif, which is part of, but distinct from, a proprotein convertase cleavage site. The zona proteins are highly glycosylated and 4/4 potential N-linkage sites on ZP1, 6/6 on ZP2, and 5/6 on ZP3 are occupied. Potential O-linked carbohydrate sites are more ubiquitous, but less utilized.  相似文献   

10.
To study zona pellucida antigens involved in human fertilization, five monoclonal antibodies (MAbs)--2A1, 2G3, 4A2, 4E12, and 5H4--were produced to a glycoprotein family (ZP4) isolated from heat-solubilized porcine zonae pellucidae. Each MAb reacted not only with solubilized porcine zona glycoproteins but also with the glycoproteins deglycosylated by trifluoromethanesulfonic acid treatment. They also reacted with intact zonae pellucidae of porcine and human oocytes. Three (4A2, 4E12, and 5H4) of the five MAbs showed a significant blocking effect on human sperm binding and penetration of human zonae pellucidae. The 5H4 MAb showed a strong reaction with ZP4 and ZP1 glycoprotein families of porcine zonae pellucidae, and four other MAbs reacted more strongly with ZP3 than with ZP4. The reactivity of 5H4 with porcine zona glycoproteins was destroyed by chymotrypsin digestion, but the antigen epitope was resistant to proteolysis by trypsin and endoproteinase Lys-C. A peptide fragment reactive to 5H4 was isolated by reverse-phase HPLC from endoproteinase Lys-C-treated ZP4 glycoproteins, and its molecular mass was determined to be 7 kDa by SDS-PAGE. These results suggested that the antigen epitope corresponding to 5H4 is a good candidate for development of a contraceptive vaccine.  相似文献   

11.
The zona pellucida surrounding ovulated mouse eggs contains three glycoproteins, two of which (ZP2 and ZP3) are reported sperm receptors. After fertilization, the zona pellucida is modified ad minimus by cleavage of ZP2, and sperm no longer bind. Crosstaxa sperm binding is limited among mammals, and human sperm do not bind to mouse eggs. Using transgenesis to replace mouse ZP2 and/or ZP3 with human homologs, mouse lines with human-mouse chimeric zonae pellucidae have been established. Unexpectedly, mouse, but not human, sperm bind to huZP2 and huZP2/huZP3 rescue eggs, eggs fertilized in vitro with mouse sperm progress to two-cell embryos, and rescue mice are fertile. Also unanticipated, human ZP2 remains uncleaved after fertilization, and mouse sperm continue to bind early rescue embryos. These observations are consistent with a model in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

12.
The zona pellucida (ZP) is a specialized extracellular coat that surrounds the plasma membrane of mammalian eggs. Its presence is essential for successful completion of oogenesis, fertilization and preimplantation development. The ZP is composed of only a few glycoproteins which are organized into long crosslinked fibrils that constitute the extracellular coat. A hallmark of ZP glycoproteins is the presence of a ZP domain, a region of polypeptide responsible for polymerization of the glycoproteins into a network of interconnected fibrils. The mouse egg ZP consists of only three glycoproteins, called ZP1, ZP2, and ZP3, that are synthesized and secreted exclusively by growing oocytes. One of the glycoproteins, ZP3, serves as both a binding partner for sperm and inducer of sperm exocytosis, the acrosome reaction. Female mice lacking ZP3 fail to assemble a ZP around growing oocytes and are completely infertile. Sperm bind to the carboxy-terminal region of ZP3 polypeptide encoded by ZP3 exon-7 and binding is sufficient to induce sperm to complete the acrosome reaction. Whether sperm recognize and bind to ZP3 polypeptide, oligosaccharide, or both remains an unresolved issue. Purified ZP3 self-assembles into long homomeric fibrils under non-denaturing conditions. Apparently, sperm added to ZP3 bind to the fibrils and are prevented from binding to ovulated eggs in vitro. These, as well as other aspects of ZP structure and function are addressed in this article.  相似文献   

13.
Mouse eggs microinjected with physiological concentrations of inositol 1,4,5-trisphosphate (IP3) do not emit the second polar body, form a pronucleus, or display a fertilization-associated set of changes in the pattern of protein synthesis. IP3-injected eggs, however, display a conversion of the zona pellucida glycoprotein ZP2 to ZP2f. The effect is concentration-dependent with an EC50 (effective concentration, 50%) of 5-10 nM and also occurs in the presence of reduced levels of extracellular calcium. The egg-induced zona pellucida modification is not elicited by several other inositol phosphates that are not able to release calcium from intracellular stores in other systems. Analysis of individual eggs microinjected with IP3 reveals a strong correlation between a reduced binding of sperm to the zona pellucida and the ZP2 to ZP2f conversion. In addition, solubilized zonae pellucidae isolated from IP3-injected eggs possess reduced levels of acrosome reaction-inducing activity. These egg-induced modifications of the zona pellucida--reduced sperm receptor and acrosome reaction-inducing activities and the ZP2 to ZP2f conversion--elicited by microinjected-IP3 are similar to those that occur following fertilization. Results of these experiments suggest that IP3 generated in response to fertilization may play a role in the egg-induced modifications of the zona pellucida that result in the polyspermy block.  相似文献   

14.
Vertebrate eggs are surrounded by an extracellular matrix with similar functions and conserved individual components: the zona pellucida (ZP) glycoproteins. In mammals, chickens, frogs, and some fish species, we established an updated list of the ZP genes, studied the relationships within the ZP gene family using phylogenetic analysis, and identified ZP pseudogenes. Our study confirmed the classification of ZP genes in six subfamilies: ZPA/ZP2, ZPB/ZP4, ZPC/ZP3, ZP1, ZPAX, and ZPD. The identification of a Zpb pseudogene in the mouse genome, Zp1 pseudogenes in the dog and bovine genomes, and Zpax pseudogenes in the human, chimpanzee, macaque, and bovine genomes showed that the evolution of ZP genes mainly occurs by death of genes. Our study revealed that the extracellular matrix surrounding vertebrate eggs contains three to at least six ZP glycoproteins. Mammals can be classified in three categories. In the mouse, the ZP is composed of three ZP proteins (ZPA/ZP2, ZPC/ZP3, and ZP1). In dog, cattle and, putatively, pig, cat, and rabbit, the zona is composed of three ZP proteins (ZPA/ZP2, ZPB/ZP4, and ZPC/ZP3). In human, chimpanzee, macaque, and rat, the ZP is composed of four ZP proteins (ZPA/ZP2, ZPB/ZP4, ZPC/ZP3, and ZP1). Our review provides new directions to investigate the molecular basis of sperm-egg recognition, a mechanism which is not yet elucidated.  相似文献   

15.
The zona pellucida is an extracellular coat that surrounds mammalian eggs and early embryos. This insoluble matrix separates germ from somatic cells during folliculogenesis and plays critical roles during fertilization and early development. The mouse and human zona pellucida contain three glycoproteins (ZP1 or ZPB, ZP2, ZP3), the primary structures of which have been deduced by molecular cloning. Targeted mutagenesis of endogenous mouse genes and transgenesis with human homologues provide models to investigate the roles of individual zona components. Collectively, the genetic data indicate that no single mouse zona pellucida protein is obligatory for taxon-specific sperm binding and that two human proteins are not sufficient to support human sperm binding. An observed post-fertilization persistence of mouse sperm binding to "humanized" zona pellucida correlates with uncleaved ZP2. These observations are consistent with a model for sperm binding in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

16.
Zona pellucida (ZP) is a glycoproteinaceous translucent matrix that surrounds the mammalian oocyte and plays a critical role in the accomplishment of fertilization. In humans, it is composed of 4 glycoproteins designated as ZP1, ZP2, ZP3 and ZP4, whereas mouse ZP is composed of ZP1, ZP2 and ZP3 (Zp4 being a pseudogene). In addition to a variable sequence identity of a given zona protein among various species, human ZP1 and ZP4 are paralogs and mature polypeptide chains share an identity of 47%. Employing either affinity purified native or recombinant human zona proteins, it has been demonstrated that ZP1, ZP3 and ZP4 bind to the capacitated human spermatozoa and induce an acrosome reaction, whereas in mice, ZP3 acts as the putative primary sperm receptor. Human ZP2 only binds to acrosome-reacted spermatozoa and thus may be acting as a secondary sperm receptor. In contrast to O-linked glycans of ZP3 in mice, N-linked glycans of human ZP3 and ZP4 are more relevant for induction of the acrosome reaction. Recent studies suggest that Sialyl-Lewisx sequence present on both N- and O-glycans of human ZP play an important role in human sperm?Cegg binding. There are subtle differences in the downstream signaling events associated with ZP3 versus ZP1/ZP4-mediated induction of the acrosome reaction. For example, ZP3 but not ZP1/ZP4-mediated induction of the acrosome reaction is dependent on the activation of the Gi protein-coupled receptor. Thus, various studies suggest that, in contrast to mice, in humans more than one zona protein binds to spermatozoa and induces an acrosome reaction.  相似文献   

17.
At fertilization, spermatozoa bind to the zona pellucida (ZP1, ZP2, ZP3) surrounding ovulated mouse eggs, undergo acrosome exocytosis and penetrate the zona matrix before gamete fusion. Following fertilization, ZP2 is proteolytically cleaved and sperm no longer bind to embryos. We assessed Acr3-EGFP sperm binding to wild-type and huZP2 rescue eggs in which human ZP2 replaces mouse ZP2 but remains uncleaved after fertilization. The observed de novo binding of Acr3-EGFP sperm to embryos derived from huZP2 rescue mice supports a ;zona scaffold' model of sperm-egg recognition in which intact ZP2 dictates a three-dimensional structure supportive of sperm binding, independent of fertilization and cortical granule exocytosis. Surprisingly, the acrosomes of the bound sperm remain intact for at least 24 hours in the presence of uncleaved human ZP2 regardless of whether sperm are added before or after fertilization. The persistence of intact acrosomes indicates that sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. A filter penetration assay suggests an alternative mechanism in which penetration into the zona matrix initiates a mechanosensory signal transduction necessary to trigger the acrosome reaction.  相似文献   

18.
The mammalian zona pellucida is a mixture of glycoproteins, believed to be encoded by three distinct genes, ZP1/ZPB, ZP2/ZPA, and ZP3/ZPC. We have now determined that the true human orthologue of the mouse Zp1 gene is not ZPB, but that there is a distinct human ZP1 gene. Comparison of the human ZP1 and murine Zp1 genes indicates significant conservation of nucleotide and amino acid sequences, of intron-exon size and organisation, and of regulatory sequences. In addition, the mouse and human ZP1 genes are in a region of conserved synteny between human chromosome 11 and mouse chromosome 19.  相似文献   

19.
Sperm receptors are located in the mammalian egg extracellular coat, or zona pellucida. Mouse and hamster sperm receptor glycoproteins, mZP3 (83 x 10(3) M(r)) and hZP3 (56 x 10(3) M(r)), respectively, have very similar polypeptides (44 x 10(3) M(r); 81% identical) that are glycosylated to different extents. Purified mZP3 and hZP3 can bind to mouse sperm, prevent them from binding to eggs and induce them to undergo exocytosis, the acrosome reaction, in vitro. A DNA construct that placed the hZP3 gene under the control of mZP3 gene 5'-flanking sequence was used in this report to produce two mouse lines that harbored the foreign sperm receptor transgene. In both lines, the transgene was expressed only by growing oocytes, at a level comparable to that of the endogenous mZP3 gene, and the developmental pattern of transgene expression resembled that of the mZP3 gene. In addition to mZP3, transgenic mouse oocytes synthesized and secreted a glycoprotein indistinguishable from hZP3, and incorporated both glycoproteins into a mosaic zona pellucida. Importantly, hZP3 purified from such zonae pellucidae exhibited both sperm receptor and acrosome reaction-inducing activities in vitro and, following fertilization of transgenic mouse eggs, was inactivated. These results demonstrate that a biologically active foreign sperm receptor can be synthesized and secreted by transgenic mouse oocytes, assembled into a mosaic zona pellucida, and inactivated following fertilization as part of the secondary block to polyspermy.  相似文献   

20.
For sperm to fertilize eggs, they must first bind to the thick zona pellucida (ZP) that surrounds the plasma membrane of all unfertilized mammalian eggs. An extensive literature suggests that mouse sperm recognize and bind to a specific ZP glycoprotein called mZP3. However, the role of individual ZP glycoproteins in binding of mouse sperm to eggs has been called into question by recent transgenic experiments with null mice. Results of such experiments have been interpreted to mean that binding of sperm depends on the supramolecular structure of the ZP, not on an individual ZP glycoprotein. Here, it is argued that results of these transgenic experiments actually are consistent with the prevailing view of gamete recognition that implicates a specific ZP glycoprotein in both binding of mouse sperm to eggs and induction of the acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号