首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recent investigations have shown the temperate scleractinian coral Cladocora caespitosa to be a new potential climate archive for the Mediterranean Sea. Whilst earlier studies have demonstrated a seasonal variation in growth rates, they were unable to distinguish which environmental parameter (light, temperature, or food) was influencing growth. In this study, the effect of these three factors on the coral physiology and calcification rate was characterized to aid the correct interpretation of skeletal trace element variations. Two temperatures (13 and 23°C), irradiances (50 and 120 μmol m−2 s−1), and feeding regimes (unfed and fed with nauplii of Artemia salina) were tested under controlled laboratory conditions on the growth, zooxanthellae density, chlorophyll (chl) content, and asexual reproduction (budding) of C. caespitosa during a 7-week factorial experiment. Unlike irradiance, which had no effect, high temperature and food supply increased the growth rates of C. caespitosa. The effect of feeding was however higher for corals maintained at low temperature, suggesting that heterotrophy is especially important during the cold season, and that temperature is the predominant factor affecting the coral’s growth. At low temperature, fed samples had higher zooxanthellae density and chl content, possibly for maximizing photosynthetic efficiency. Sexual reproduction investment of C. caespitosa was higher during favourable conditions characterised by high temperatures and zooplankton availability.  相似文献   

2.
Data on sexual reproduction of scleractinian coral species living in temperate zones, particularly in the Mediterranean Sea, are quite scarce. This paper describes sexual reproduction of the colonial coral Cladocora caespitosa from Veliko jezero (Mljet Island) in the Adriatic Sea. Spawned orange eggs and white sperm bundles were observed on the coral bank of C. caespitosa two nights before the full moon (20 June 2005) coinciding with increasing water temperature and correlated with the lunar cycle. Spawning was observed during five nights, involving about 30% of the colonies from the coral bank. Different colonies on the bank released only one type of gamete during the reproductive period. The diameter of the sperm bundles ranged from 100 to 200 μm (average 163 μm; SD = 47.08), while the female gametes diameter ranged from 300 to 500 μm (average 416 μm; SD = 73.12).  相似文献   

3.
A sclerochronological analysis was performed on Cladocora caespitosa corals from Late Pleistocene terraces near Taranto (Apulia, Italy) to reconstruct the main palaeoenvironmental conditions at the time of their growth. The fossil corallites were sampled in the Santa Teresiola uplifted bank or ‘open frame reef’ attributed to the Last Interglacial Period. The typical, annual growth pattern of the temperate coral with two alternate high- and low-density bands allowed the reconstruction of two multidecadal growth curves of 61 and 95 years. Trend analysis showed oscillations in annual growth rates similar to those observed in recent, living colonies sampled along a north–south latitudinal transect around the Italian and Croatian coasts as far as Tunisia. The mean growth rate of the fossil reef (4.2 ± 2 mm year−1) is comparable to those measured on colonies living in the coldest part of the Mediterranean Sea. The comparison with data from living Croatian banks shows how fossil C. caespitosa lived in a semi-enclosed environment characterized by seasonal inputs of fresh, cold water. The greatest variations in decadal growth rates of the fossil colonies support the hypothesis of larger amplitude of the seasonal cycles in the past. The death of the fossil bank was probably due to a sudden alluvial input that suffocated the reef with a great amount of mud. Another possible cause of the death of the bank was a prolonged increase in summer temperatures that caused colony mortality and enhanced algal colonization.  相似文献   

4.
Rising atmospheric CO2 and its equilibration with surface ocean seawater is lowering both the pH and carbonate saturation state (Ω) of the oceans. Numerous calcifying organisms, including reef-building corals, may be severely impacted by declining aragonite and calcite saturation, but the fate of coral reef ecosystems in response to ocean acidification remains largely unexplored. Naturally low saturation (Ω ~ 0.5) low pH (6.70–7.30) groundwater has been discharging for millennia at localized submarine springs (called “ojos”) at Puerto Morelos, México near the Mesoamerican Reef. This ecosystem provides insights into potential long term responses of coral ecosystems to low saturation conditions. In-situ chemical and biological data indicate that both coral species richness and coral colony size decline with increasing proximity to low-saturation, low-pH waters at the ojo centers. Only three scleractinian coral species (Porites astreoides, Porites divaricata, and Siderastrea radians) occur in undersaturated waters at all ojos examined. Because these three species are rarely major contributors to Caribbean reef framework, these data may indicate that today’s more complex frame-building species may be replaced by smaller, possibly patchy, colonies of only a few species along the Mesoamerican Barrier Reef. The growth of these scleractinian coral species at undersaturated conditions illustrates that the response to ocean acidification is likely to vary across species and environments; thus, our data emphasize the need to better understand the mechanisms of calcification to more accurately predict future impacts of ocean acidification.  相似文献   

5.
Cladocora caespitosa is an endemic coral of the Mediterranean Sea and an important carbonate bioconstructor that adds 3D complexity to the habitat, thus increasing marine biodiversity. Despite its important role in the ecosystem, the real status of the population along most of the Mediterranean coastline is still poorly investigated and very little is known about the resilience of the species. Using non-destructive visual surveys, colonies of C. caespitosa were investigated by SCUBA diving in 2013 and 2015 at seven sites of the northern Adriatic Sea (southern part of the Gulf of Trieste). Data about colony size, index of sphericity and corallite diameter were collected. Almost all biometrical parameters differed significantly among sampling sites, showing low occurrence of the larger size classes compared to the abundance of small-sized colonies. This pattern of distribution is typical of long-lived organisms. The positively skewed colony size distribution could be due to both a high mortality rate of small colonies unable to reach larger size classes, and to a high fragmentation rate of colonies, related to a strong hydrodynamic forces. The northern Adriatic population of C. caespitosa has previously been investigated by Schiller, who reported size and abundance data of colonies from one site, at a depth range of 2–5?m. We compared these data with our findings from the same sampling site, adding new information about the ecology of C. caespitosa. After a 30-year period, the comparison shows a change in the size distribution of colonies, with a decrease of the small class and an increase of the medium class of colonies. In view of these conclusions, further assessments are required in order to evaluate the trend of the northernmost C. caespitosa population in the Mediterranean Sea.  相似文献   

6.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

7.
Laura Gutiérrez 《Oecologia》1998,115(1-2):268-277
Local patterns of adult distribution in organisms that disperse young as pelagic larvae can be determined at the time of recruitment through habitat selection or, shortly thereafter, through post-recruitment processes such as differential juvenile survivorship and interspecific competition. This study addresses the importance of habitat selection by recruits in establishing the local pattern of adult distribution in two sympatric Caribbean damselfish species, Stegastes dorsopunicans and S. planifrons. Both species inhabit shallow reefs but show little overlap in their distribution; S. dorsopunicans predominates in the reef crest and S. planifrons occurs primarily on the reef slope. Furthermore, S. dorsopunicans is associated with rocky substrate, while S. planifrons occupies live coral. The substrate cover follows a similar pattern with coral being much less common on the reef crest than on the reef slope. Monitoring recruitment every other day in reciprocal removal experiments and artificial reefs indicates that the observed pattern of local adult distribution is a product of habitat selection for both species. The presence or absence of conspecifics did not influence recruitment patterns for either species. Stegastes dorsopunicans recruited primarily to shallow, rocky areas, appearing to cue on both substratum type and depth. Stegastes planifrons recruited exclusively to coral substratum independent of depth. These results indicate that local adult patterns of distribution can be explained by habitat selection at recruitment, and that substrate type and depth may be important cues. Received: 27 May 1997 / Accepted: 4 January 1998  相似文献   

8.
The abundance of lesions from fish bites on corals was quantified at nine shallow reefs in the main Hawaiian Islands. There were on average 117 bite scars m−2 on Pocillopora meandrina tissue from the barred filefish Cantherhines dumerilii, 69 bites m−2 on Porites compressa tissue, and 4 bites m−2 on Porites lobata tissue from the spotted puffer Arothron meleagris. Across sites, the frequency of A. meleagris bites on P. compressa per unit area of living coral cover declined exponentially with increasing coral cover. P. compressa nubbins in two size classes (1–2 cm and 4–5 cm) were transplanted onto six study reefs. Nubbins in the small size class were entirely removed by bites from A. meleagris, while nubbins ≥4 cm were only partially consumed, leaving them able to recover. At sites with abundant P. compressa, predation had little effect on transplanted nubbins; at sites where P. compressa comprised less than 5% of living cover, all nubbins were preyed upon. A. meleagris bite lesions on P. compressa were monitored through time and fully recovered in 42 ± 4 days. A model of the risk of over-predation (a second predation event before the first is healed) decreased exponentially with increasing coral cover and increased linearly with increasing lesion healing time. The increased risk of over-predation at low coral cover could indicate an Allee effect limiting the recovery of coral populations if coral cover is substantially reduced by natural or anthropogenic disturbances.  相似文献   

9.
Carsten Helm  Immo Schülke 《Facies》2006,52(3):441-467
Small reefal bioconstructions that developed in lagoonal settings are widespread in a few horizons of the Late Jurassic (Oxfordian) succession of the Korallenoolith Formation, exposed southwest of Hannover, Northwest Germany. Especially the florigemma-Bank Member, “sandwiched” between oolite shoal deposits, exposes a high variety of build-ups, ranging from coral thrombolite patch reefs, to biostromes and to coral meadows. The reefs show a distribution with gradual facies variations along an outcrop belt that extends about 30 km from the Wesergebirge in the NW to the Osterwald Mts in the SE.The patch reefs from the Deister Mts locality at the “Speckhals” are developed as coral-chaetetid-solenoporid-microbialite reefs and represent a reef type that was hitherto unknown so far north of its Tethyan counterparts. They are mainly built up by coral thickets that are preserved in situ up to 1.5 m in height and a few metres in diameter. They contain up to 20 coral species of different morphotypes but are chiefly composed of phaceloid Stylosmilia corallina and Goniocora socialis subordinately. The tightly branched Stylosmilia colonies are stabilized by their anastomosing growth. The coral branches are coated with microbial crusts and micro-encrusters reinforcing the coral framework. Encrusters and other biota within the thicket show a typical community replacement sequence: Lithocodium aggregatum, Koskinobullina socialis and Iberopora bodeuri are pioneer organisms, whereas the occurrence of non-rigid sponges represents the terminal growth stage. The latter are preserved in situ and seem to be characteristic so far poorly known constituents of the Late Jurassic cryptobiont reef dweller community. The distance and overall arrangement of branches seems to be the crucial factor for the manifestation of a (cryptic) habitat promoting such community replacement sequences. Widely spaced branches often lack any encrusting and/or other reef dwelling organisms, whereas tightly branched corals, as is St. corallina, stimulate such biota. Hence, such reefs are well suited for research on coelobites and community sequences of encrusting and cavity dwelling organisms.  相似文献   

10.

We analysed the patterns of genetic variability of eastern Mediterranean populations of the scleractinian coral Cladocora caespitosa, from the Aegean and Levantine seas, using 19 polymorphic microsatellite loci, 11 of which were newly characterized. The observed genetic pattern reflects a scenario of isolation by environment: FST comparisons showed a higher degree of genetic differentiation between the two Cypriot populations that are separated by only 11 km than between these two Levantine populations and the Aegean population in Greece, which are separated by 1300 km. We hypothesize that local-scale oceanographic factors influenced the dispersal of planulae between the geographically close populations, playing a crucial role in the genetic structure of this coastal coral. Yet, despite being characterized as a species with limited dispersal and high self-recruitment, large-scale migration does eventually occur as first-generation migrants were identified between the most distant populations. In line with previous findings of reproductive plasticity in C. caespitosa, we also found localized differences in reproduction mode (sexual vs. asexual) within a geographically limited context. Several individuals were identified as clones, indicating the predominance of asexual reproduction in one of the Cypriot populations. We interpret this predominance either as a direct response to or as an indirect consequence of perturbations suffered by this C. caespitosa population. These perturbations are caused by unfavourable environmental conditions that threatened local survival, in particular water temperature changes and windstorm swells. Asexual reproduction may be a mechanism used by C. caespitosa to counteract mortality events and recolonize devastated areas, and likely accounts for the occasional high levels of clonality and low levels of genetic diversity. Local adaptations such as these should therefore be considered in conservation and management strategies to maintain and preserve the gene pool of this endangered species.

  相似文献   

11.
 CaCO3 production by reef-building organisms on Green Island Reef in the Great Barrier Reef of Australia is estimated and compared with the contribution of benthic foraminifera to the sediment mass of the vegetated sand cay. Major constituents of the cay are benthic foraminifera (mainly Amphistegina lessonii, Baculogypsina sphaerulata, and Calcarina hispida), calcareous algae (Halimeda and coralline algae), hermatypic corals, and molluscs. Among these reef-building organisms, benthic foraminifera are the single most important contributor to the sediment mass of the island (ca. 30% of total sediments), although their production of CaCO3 is smaller than other reef-building organisms. Water current measurements and sediment traps indicate that the velocity of the current around Green Island is suitable for transportation and deposition of foraminiferal tests. Abundant foraminifera presently live in association with algal turf on the shallow exposed reef flat, whose tests were accumulated by waves resulting in the formation and maintenance of the coral sand cay. Accepted: 30 June 1999  相似文献   

12.
Summary The Upper Rhaetian coral limestone of Adnet, southeast of Salzburg Austria has been repeatedly referred to as one of the most spectacular examples of an ancient ‘autochthonous’ coral reef structure. The ‘Tropfbruch’ quarry is probably the best outcrop for interpreting the distributional patterns of biotic successions and communities of a late Triassic patch reef. Our study is based on the interpretation of a) outcrop photographs, b) reef maps resulting from quadrat transects, and c) the analysis of quantitative data describing the distribution and frequency of reef organisms and sediment. A new methodological approach (combination of reef mapping and photo-transects) is used to obtain quantitative field data which can be compared in greater detail with data from modern coral reefs investigated by corresponding quantitative surveys. Three unconformities and three well-defined ‘reef growth stages’ reflecting the vertical and lateral development of the reef structure were differrentiated using transects: Stage 1, representing the reef growth optimum, is characterized by laterally differentiated coral reef knobs with corals in growth position. Criteria supporting this interpretation are the extraordinary size of the corals, their preservation in situ and the great thickness of this interval. The massive coralPamiroseris grew under higher energy conditions at the rim of the reef knob, whereas branchingRetiophyllia colonies preferred less agitated water in the center. Vertical changes are reflected by an increase in frequency of the dasycladacean algaDiplopora adnetensis and by the decreasing size ofRetiophyllia. These sedimentological and biological criteria together with the unconformity above indicate a fall in the sea level as a major control mechanism. Stage 2, separated from stage 1 by an unconformity caused by partial subaerial exposure and karstification, is characterized by vertically stacked coral successions with diverse reef debris. Facies heterogeneity is reflected by differences in the diversity, taphonomy and packing density of reef-building organisms as well as by differences in sediment input from the platform. Water depths and accommodation space were lower, therefore minor sea level fluctuations had a stronger effect on the biotic composition. The high percentage of coral debris and corals reworked by storms and the increase in the input of platform sediment led to a reduction of reef growth. Stage 3, again separated at the base by an unconformity associated with karstification, is characterized by bioclastic sediments with isolated reefbuilders forming a level-bottom community. The distribution of different coral morphotypes suggests that sea level fluctuations were not the only controlling factor. Variations in the substrate were caused by differences in the input of platform sediment. The three-step development seen in Adnet documents the response of low-diverse coral associations to variations caused by small-scale sea level changes, storm activity and sedimentation. The vertical changes in reef community structures correspond to a sequence of ‘allogenic replacements’. The Adnet reef structure should not be regarded as a general model of Alpine Upper Rhaetian reefs, because of the particular setting of the patch reef. Only the ‘capping beds’ of the Upper Rhaetian Reef Limestone of the Steinplatte exhibit criteria similar to Adnet. Potential modern analogues of features seen in the coral communities of Adnet are the internal structure of theRetiophyllia thickets, the key role of branching corals within the communities, the scattered distribution and low and even diversity of corals subsequent to breaks in settlement, segration patterns of corals indicating ‘contact avoidance’, toppling of large coral colonies by intensive boring, and decreasing coral coverage from deeper and sheltered settings to more shallower water depths.  相似文献   

13.
Abstract Prosperous deep coral mounds including living colonies of Lophelia pertusa together with Madrepora oculata and Desmophyllum dianthus (= D. cristagalli) have been discovered in 2000, by fishery operations on the eastern side of the Ionian Sea. The living coral mounds are located between ca. 300 and 1,100 m on a gently dipping shelf off Apulia at Santa Maria di Leuca (SML), and characterized by a complex seabed topography. Side scan sonar, shallow high-resolution seismics and sampling indicate that these Lophelia-bearing coral mounds colonize quasi-indurate (firmground) Pleistocene sediment. At places live corals were found on Pleistocene coral-hardgrounds. The fauna associated with these Ionian modern coral mounds is less diversified than modern Eastern Atlantic counterparts. The core of living coral mounds colonies is at present located in 500–700 m and is tentatively suggested that their survival is mostly controlled by oceanographic factors. The SML coral banks represent so far a unique example of living Lophelia-bearing coral mounds in the Mediterranean basin.This revised version was published online in January 2005 with corrections to the author name and figure captions 4 and 5.  相似文献   

14.
15.
Summary The shallow marine subtropical Northern Bay of Safaga is composed of a complex pattern of sedimentary facies that are generally rich in molluscs. Thirteen divertaken bulk-samples from various sites (reef slopes, sand between coral patches, muddy sand, mud, sandy seagrass, muddy seagrass, mangrove channel) at water depths ranging from shallow subtidal to 40m were investigated with regard to their mollusc fauna >1mm, which was separated into fragments and whole individuals. Fragments make up more than 88% of the total mollusc remains of the samples, and their proportions correspond to characteristics of the sedimentary facies. The whole individuals were differentiated into 622 taxa. The most common taxon,Rissoina cerithiiformis, represented more than 5% of the total mollusc content in the samples. The main part of the fauna consists of micromolluscs, including both small adults and juveniles. Based on the results of cluster-, correspondence-, and factor analyses the fauna was grouped into several associations, each characterizing a sedimentary facies: (1) “Rhinoclavis sordidula—Corbula erythraeensis-Pseudominolia nedyma association” characterizes mud. (2) “Microcirce sp.—Leptomyaria sp. association” characterizes muddy sand. (3)”Smaragdia spp.-Perrinia stellata—Anachis exilis—assemblage” characterizes sandy seagrass. (4) “Crenella striatissima—Rastafaria calypso—Cardiates-assemblage” characterizes muddy seagrass. (5) “Glycymeris spp.-Parvicardium sueziensis-Diala spp.-assemblage” characterizes sand between coral patches. (6) “Rissoina spp.-Triphoridae —Ostreoidea-assemblage” characterizes reef slopes. (7) “Potamides conicus—Siphonaria sp. 2—assemblage” characterizes the mangrove. The seagrass fauna is related to those of sand between coral patches and reef slopes with respect to gastropod assemblages, numbers of taxa and diversity indices, and to the muddy sand fauna on the basis of bivalve assemblages and feeding strategies of bivalves. The mangrove assemblage is related to those of sand between coral patches and the reef slope with respect to taxonomic composition and feeding strategies of bivalves, but has a strong relationship to those of the fine-grained sediments when considering diversity indices. Reef slope assemblages are closely related to that of sand between coral patches in all respects, except life habits of bivalves, which distincly separates the reef slope facies from all others.  相似文献   

16.
The increase in seawater temperature associated with global warming is a significant threat to coral health and is linked to increasing mass mortality events and Vibrio-related coral diseases. In the Mediterranean Sea, the endemic Cladocora caespitosa and the invasive species Oculina patagonica are the main scleractinian corals affected by mass mortalities. In this study, culturable Vibrio spp. assemblages associated with healthy and unhealthy colonies of these two shallow coral species were characterized to assess the presence of Vibrio pathogens in tissue necrosis. Vibrio communities associated with O. patagonica and C. caespitosa showed geographical differences, although these became more homogeneous in unhealthy specimens of both species. Furthermore, the number of recovered Vibrio specimens was more than five times higher in unhealthy than in healthy corals. Within these culturable vibrios, the known pathogens Vibrio mediterranei and Vibrio coralliilyticus were present in unhealthy colonies of both coral species in the two localities, suggesting that they could play a role in the health status of C. caespitosa and thus act as generalist pathogens in Mediterranean corals. Nonetheless, a clonal type of V. coralliilyticus detected in C. caespitosa was not associated with disease signs, suggesting that this species could encompass assemblages with different levels of virulence.  相似文献   

17.
Coral reefs are thought to be in worldwide decline but available data are practically limited to reefs shallower than 25 m. Zooxanthellate coral communities in deep reefs (30–40 m) are relatively unstudied. Our question is: what is happening in deep reefs in terms of coral cover and coral mortality? We compare changes in species composition, coral mortality, and coral cover at Caribbean (Curacao and Bonaire) deep (30–40 m) and shallow reefs (10–20 m) using long-term (1973–2002) data from permanent photo quadrats. About 20 zooxanthellate coral species are common in the deep-reef communities, dominated by Agaricia sp., with coral cover up to 60%. In contrast with shallow reefs, there is no decrease in coral cover or number of coral colonies in deep reefs over the last 30 years. In deep reefs, non-agaricid species are decreasing but agaricid domination will be interrupted by natural catastrophic mortality such as deep coral bleaching and storms. Temperature is a vastly fluctuating variable in the deep-reef environment with extremely low temperatures possibly related to deep-reef bleaching. An erratum to this article can be found at  相似文献   

18.
Monthly skeletal growth of the scleractinian, temperate coral Cladocora caespitosa (L.) from the Ligurian Sea (NW Mediterranean) was analysed for a period of 1 year and compared with seawater parameters. Measurements on corallite sections and on X-ray images showed that the formation of the high-density (HD) band and two dissepiments are favoured by fall–winter conditions, characterised by high quantities of rain, rough seas, and cold seawater. In summer, when the low-density (LD) band is formed, the corallites stretch upward and form one new dissepiment and one deep calix, where the polyps recede almost completely in August. These findings confirmed the adaptation of the temperate coral to winter environmental conditions, characterised by low irradiance and high availability of nutrients and food particles resuspended from bottom sediments. On the contrary, the high seawater temperature, irradiance, and ammonia contents stressed the coral in August and, when they persist in September, may cause the onset of mortality events.  相似文献   

19.
The scleractinian coral Cladocora caespitosa deserves a special place among the major carbonate bioconstructors of the Mediterranean Sea. Annual coral skeleton growth, coral calcification, and skeleton density of the colonial coral C. caespitosa taken from 25 locations in the eastern Adriatic Sea were analyzed and compared with annual sea surface temperatures (SST). The growth rates of the coral C. caespitosa from the 25 stations in the Adriatic Sea ranged from 1.92 to 4.19?mm per year, with higher growth rates of the investigated corallites in the southern part of the Adriatic Sea. These growth rates are similar to those measured in other areas of the Mediterranean Sea. The correlation between coral growth and sea temperatures in the Adriatic Sea is seen as follows: An X-radiograph analysis of coral growth in C. caespitosa colonies that are over 60?years old showed that higher growth rates of this coral coincided with a warmer period in the Mediterranean Sea. A positive significant correlation exists between corallite growth rates and SST and coral calcification and SST. A negative correlation exists between coral density and SST. Coral growth rates also showed a correlation with higher eutrophication caused by nearby fish farms, along with a greater depth of the investigated colonies and high bottom currents.  相似文献   

20.
Coral reef banks may form an important component of mesophotic coral ecosystems (MCEs) in the Caribbean, but remain poorly explored relative to shallower reefs and mesophotic habitats on slopes and walls. Consequently, the processes structuring mesophotic coral reef communities are not well understood, particularly the role of disturbance. A large and regionally important mesophotic system, the Hind Bank Marine Conservation District (MCD), St. Thomas, USVI, was systematically surveyed. Data were used to construct a comprehensive benthic habitat map for the MCD, describe the abiotic and biotic components of the benthos among habitats, and investigate patterns of coral health among habitats. Two-thirds of the MCD (23.6 km2) was found to be dense coral reef (Coral Cover = 24.1%) dominated by the Montastraea annularis species complex. Coral reef ecosystems were topographically complex, but could be classified into distinct habitat types, including high coral banks (35.8% of the MCD) and two large novel coral reef habitat types corresponding to an extremely flat basin (18%) and a highly rugose hillock basin (6.5%), containing thousands of coral knolls (2–10 m high). An extreme disease event with undescribed signs of mortality occurred on 47% of coral reefs and reached a high prevalence in affected areas (42.4% ± 6.3 SE, N = 26). The disease was significantly clustered in the basin habitats of the western MCD (global Moran’s I = 0.32, P < 0.01). Observations of the spatial pattern suggested that the driver was specific to the basin habitats and may have been caused by a coherent abiotic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号