首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Warren CR  Adams MA 《Oecologia》2005,144(3):373-381
The present study examines relative growth rate (RGR) and its determinants in seedlings of nine Eucalyptus species. Species were selected from mesic (1,800 mm a−1 rainfall) through to semi-arid habitats (300 mm a−1), and thus, notionally vary in “stress” tolerance. Seedlings were grown in a glasshouse during early summer and received between 33 mol and 41 mol PAR m−2 day−1 . The mean RGR varied among species—from a minimum of 66 mg g−1 day−1 in E. hypochlamydea to a maximum of 106 mg g−1 day−1 in E. delegatensis. RGR was positively related to rainfall at the sites of seed collection. Neither specific leaf area (SLA) nor net assimilation rate was related to rainfall or RGR. While the absence of relationships with SLA and net assimilation rate contrasts with other studies and species, we cannot rule out the effects of sample size (n=9 species) and modest ranges in SLA and RGR. The ratio of leaf mass to total mass (LMR) varied from 0.49±0.07 g g−1 in E. socialis to 0.74±0.04 g g−1 in E. delegatensis and was strongly positively related with rainfall (r 2=0.77). Interspecific differences in RGR were strongly related to LMR (positive relationship, r 2=0.50) and the rate of dry matter production per mol of leaf nitrogen (positive relationship, r 2=0.64). Hence, the slow RGR of low-rainfall species was functionally related to a lower growth rate per mol of leaf nitrogen than high-rainfall species. Furthermore, slow RGR of low-rainfall species was related to greater allocation to roots at the expense of leaves. Increasing allocation to roots versus leaves is likely an adaptation to soil and atmospheric water deficits, but one that comes at the expense of a slow RGR.  相似文献   

2.
A field experiment was carried out to investigate the effects of presoaking the wheat grains (Triticum aestivum L.) in 33 or 66 mM NaCl and indolyl-3-acetic acid (IAA at 50 g m−3), gibberellic acid (GA3 at 100 g m−3) or kinetin (100 g m−3) on some tolerance criteria in wheat flag leaf at different stages of development. At various stages of flag leaf development pretreatment with 33 or 66 mM NaCl decreased degree of succulence (particularly 66 mM), relative growth rate, net assimilation rate, relative water content, K+ content and K+/Na+ ratio and at the same time induced accumulation of abscisic acid and Na+. In the majority of cases grain pretreatment with GA3 or kinetin and to a lesser extent with IAA alleviated either partially or completely the deleterious effect of salinity on the above mentioned parameters.  相似文献   

3.
Abstract With a view to defining factors regulating the growth responses of sunflower to salinity, plants were grown in solution culture (0, 50 or 100 mol m−3 NaCl) and under natural light, and the areas of every leaf measured once or twice daily from 22 until 38 d after germination. During this period, carbon availability for growth was manipulated by changing light levels and by the use of a photosynthesis inhibitor, DCMU. Salinity reduced relative leaf expansion rates per plant (RLER) by an average of 0.04 (50 mol m−3) and 0.08 (100 mol m−3) m2 m−2 d−1 compared with control plants of equivalent leaf area: the effects were found in expanding leaves regardless of age or size. Control plants expanded faster during the day than the night, but plants grown in salt had an almost constant RLER throughout the 24 h, indicating that salt influences the rate of utilization of assimilates independently of their production. DCMU reduced RLER considerably in both control and salt-treated plants and reduced the advantage of control plants during the day. Conditions of low light also reduced the differences in RLER between control and salt-treated plants. When salt was removed from the root medium of non-DCMU plants, the expansion rates equalled that of the controls within 24 h and remained at the same levels for the following 3 d measurement period: this recovery applied to leaves of all ages. Salt-grown plants with no photosynthesis (DCMU treatments) also increased their expansion rates upon removal of salt from the root medium, thus providing further evidence that growth was not limited by carbohydrate status, i.e. that salt influences growth primarily via its effects on the rate of utilization of stored assimilates.  相似文献   

4.
Subcellular Adaptation to Salinity and Irradiance in Dunaliella salina   总被引:2,自引:0,他引:2  
Dunaliella salina V-63 was cultivated in different concentrations of NaCl (0.5, 1.0, 2.5, 3.0, or 4.0 M) and at two irradiances (170 or 220 μmol m−2s−1). Concentration-dependent suppression of growth was observed above 1 M NaCl, and elevated salinity induced formation of salt-containing vacuoles. However, the changes in the chloroplast ultrastructure following changes in salinity and irradiance (increase of invaginations and protuberances, numerous grana with low number of thylakoids, less number of starch grains, etc.) appeared to be of primary importance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The effects of soil-water salinity on growth and photosynthesis of three coastal dune plants were examined by salt-treatment in order to clarify the causal relationship between salinity and plant distribution in a dune habitat. Plants were cultivated hydroponically at three salinity levels: 0, 10 and 100 mM NaCl. With the 100 mM salt treatment,Calystegia soldanella (C3 species) had the highest relative growth rate (RGR) (0.085 g g−1 d−1), followed byCarex kobomugi (C3) (0.066), andIschaemum anthephoroides (C4) (0.060). This order coincides with the distribution pattern of the three species on coastal dunes;Calystegia soldanella is generally distributed in more seaward areas whereasI. anthephoroides occurs further inland. The order of RGR was determined exclusively by leaf area ratio (LAR) among the three species. Due to its C4 pathway,I. anthephoroides had higher net photosynthetic rate (Pn) and net assimilation rate (NAR) than the two C3 plants at all NaCl concentrations, despite its low RGR. This apparent discrepancy is explainable by differences of LAR among the three species; LAR ofI. anthephoroides was lowest, and about half that ofCalystegia soldanella. These results suggest that LAR is one of the main determinants of salt tolerance based on RGR, whereas Pn or NAR may not be significant. This article is dedicated to Professor Hideo Iwaki, University of Tsukuba, in appreciation of the sincere encouragement he has given to the authors.  相似文献   

6.
Effect of salinity on phosphate accumulation and injury in soybean   总被引:5,自引:0,他引:5  
Many soybean [Glycine max (L.) Merr.] genotypes that are grown in solution cultures are highly sensitive to the combination of both salinity and inorganic phosphate (Pi) in the substrate. This effect has been observed on numerous occasions on plants grown in a saline medium that contained a substantial amount of Ca (i.e., CaCl2/NaCl=0.5 on a molar basis). Because Ca is important in regulating ion transport and membrane permeability, solution culture experiments were designed to examine the effects of various concentrations of Pi and ratios of CaCl2/NaCl (0 to 0.5 on a molar basis) at a constant osmotic potential (−0.34 MPa) on this adverse interaction. Four soybean cultivars (‘Lee’, ‘Lee 74’ ‘Clark’ and ‘Clark 63’) were tested. No adverse salinity x Pi interaction was found on Lee at any ratio and leaf P and Cl were maintained below 300 and 200 mmol kg−1 dry wt, respectively. Clark, Clark 63 and Lee 74 soybean plants, on the other hand, were severely injured by solution salinity (−0.34 MPa osmotic potential) when substrate Pi was ≥0.12 mM. Reduced substrate Ca did not intensify the salinity x Pi interaction. On the contrary, the onset of injury was hastened and more severe with increased CaCl2/NaCl ratios in isotonic solutions. Shoot and root growth rates decreased as injury increased. Leaf P concentrations from these cultivars grown in saline solutions with 0.12 mM Pi were excessive (>600 mmol kg−1 dry wt) compared with concentrations commonly found in soybean leaf tissue yet they were independent of the severity of injury. Since leaf Cl increased wiht increased CaCl2/NaCl ratio, we suspect that the severity of foliar injury was related to the combined effects of excessive P and Cl within the tissue. Lee 74, the only injured cultivar examined that excluded Cl from its leaves, was less sensitive than either Clark cultivar and its injury was characteristically different. Other ion interactions were reported that may have played a role in injury susceptibility.  相似文献   

7.
G. Naidoo  S. G. Mundree 《Oecologia》1993,93(3):360-366
The effects of waterlogging and salinity on morphological and physiological responses in the marsh grass Sporobolus virginicus (L.) Kunth were investigated in a 4×2 factorial experiment. Plants were subjected to four salinity levels (0, 100, 200 and 400 mol m–3 NaCl) and two soil inundation conditions (drained and flooded) for 42 days. Flooding at 0 mol m–3 NaCl caused initiation of adventitious surface roots, increased internal acration and plant height, induced alcohol dehydrogenase activity (ADH), and decreased belowground biomass and the number of culms per plant. Salinity increase from 0 to 400 mol m–3 NaCl under drained conditions increased leaf and root proline concentrations and decreased photosynthesis, aboveground biomass, number of culms per plant and number of internodes per culm. Concurrent waterlogging and salinity induced ADH activity and adventitious surface roots but decreased plant height and aboveground biomass. Internal air space increased with waterlogging from 0 to 100 mol m–3 NaCl but further increases in salinity to 400 mol m–3 reduced air space. Combined waterlogging and salinity stresses, however, had no effect on photosynthesis or on the concentrations of proline in leaves or roots. These results are discussed in relation to the widespread colonization by S. virginicus of a wide range of coastal environments varying in soil salinity and in the frequency and intensity of waterlogging.  相似文献   

8.
Summary Inland and sea cliff populations of bothAgrostis stolonifera L. andHolcus lanatus L. were subjected to soil NaCl treatments, of 100 and 200 mol m−3 NaCl, and tolerance examined using plant dry weight data. A parallel experiment subjected them to salt spray treatments of 2.5%, 5% and 10% NaCl in distilled water, and tolerance assessed from leaf damage. Both populations of each species were equally sensitive to soil NaCl. When subjected to salt spray the sea cliff populations however showed marked resistance to leaf damage. Soil salinity resistance and salt spray resistance thus appear to be independent characteristics in these two species.  相似文献   

9.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The comparative responses of young olive trees (Olea europaea L. cv “Chemlali”) to different NaCl salinity levels were investigated over 11 months. One-year-old own rooted plants were grown in 10-L pots containing sand and perlite mixture (1:3 v/v). Trees were subjected to three irrigation treatments: CP (control plants that were irrigated with fresh water); SS1 (salt stressed plants irrigated with water containing 100 mM NaCl) and SS2 plants (salt stressed plants irrigated with water containing 200 mM NaCl). Shoot elongation rate, relative water content, leaf water potential and net carbon dioxide exchange rates decreased significantly with increased NaCl salinity level. Under stressed conditions, the increase of Na+ and Cl ions in both leaves and roots was accompanied with that of proline and soluble sugars. The above results show that the accumulation of proline and sugars under stressed conditions could play a role in salt tolerance. The absence of toxicity symptoms under both stress treatments and the superior photosynthetic activity recorded in SS1-treated plants suggest that cv Chemlali is better able to acclimatize to 100 mM NaCl than at 200 mM NaCl. Our findings indicate that saline water containing 100 mM NaCl, the most available water in arid region in Tunisia, can be recommended for the irrigation of cv Chemlali in the arid south of Tunisia.  相似文献   

11.
Pea seedlings (Pisum sativum L. cv ‘Kleine Rheinlän-derin’) were grown hydroponically in solutions containing either nitrate (3 or 14 mol m−3) or ammonium (3 mol m−3) as the nitrogen source. Ammonium nutrition as such had no negative effect on plant biomass production, but drastically increased the sensitivity to moderate salinity (50 mol m−3 NaCl). The reasons for this effect are investigated here and in a subsequent paper. The appearance of visible symptoms of salt damage (wilting of marginal leaf areas followed by progressive necrosis) was paralleled by the development of several characteristic modifications in the solute and metabolite contents. Major changes were: (i) high salt (NaCl) accumulation in leaves; (ii) accumulation of ammonium (up to 20 mol m−3) and amino acids (up to 110 mol m−3) in leaves, but at decreased ammonium uptake rates; and (iii) decreased protein content. In a comparison paper we report on the subcellular distribution of salts, ammonium and metabolites under the above conditions.  相似文献   

12.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

13.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   

14.
The objective of this work was to determine the influence of total dissolved solids/salinity (TDS mgL-1) on growth and biomass specific rates of nodularin (hepatotoxin) production by Nodularia spumigena 001E isolated from Lake Alexandrina, South Australia. Maximum biomass yield (dry matter, chlorophyll a and particulate organic carbon/POC) at 80 μmol photon m-2 s-1 was recorded at 3300 mg TDS L-1 and decreased at salinities above or below this value (p < 0.05). The maximum biomass yield (dry matter and chlorophyll a) at 30 μmol m-2 s-1 occurred at a higher salinity of 9900 mg TDS L-1. Cultures grown at 80 μmol m-2 s-1, at a TDS> 6600 mg L-1, had significantly (p < 0.05) lower nodularin content (ml-1 medium) than cultures grown at the same salinities at 30 μmolm-2 s-1. The maximum total toxin concentration (mL-1 medium) occurred at 9900 and 3300 mg TDS L-1 at 30 μmol m-2 s-1and 80 μmol m-2 s-1 respectively. Toxin per unit biomass, expressed as dry matter, chlorophyll a and POC was similar for cultures grown at 30 μmol m-2 s-1 or 80 μmol m-2s-1 at salinities < 6600 mg TDS L-1. At salinities > 9900 mg TDS L-1 the toxin content per unit biomass decreased at both irradiances, however, cultures grown at 30 μmol m-2s-1 had a higher toxin content than those grown at 80 μmol m-2 s-1. The results indicate that not only do changes in irradiance and salinity directly influence growth and toxin production but that changes in irradiance affected the influence of salinity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Callus of the mangrove plant, Sonneratia alba J. Smith, established from pistils of flower buds were cultured on solid Murashige and Skoog medium supplemented with 0 to 500 mM NaCl. Maximum growth was observed with 50 mM NaCl, and net growth of callus occurred for concentrations up to 200 mM NaCl. At 500 mM NaCl, growth of callus was completely inhibited, although a part of the tissue was still alive after 30 d. Cellular levels of Na+ and Cl were greatly increased by the treatment with NaCl. Uptake of K+ was also enhanced and was accompanied by increasing levels of Na+ and Cl so that the Na+/K+ ratio was almost constant (4.1–4.2) in callus grown with 50–200 mM NaCl. Levels of Mg2+ and Ca2+ were not changed significantly with 50–200 mM NaCl, whereas levels of free NH 4 + , NO 3 and SO 4 2− ions, which are convertible to organic compounds, were lowest in callus grown with 50 mM NaCl. The rate of conversion of 15NH 4 + into macromolecules during 30 d culture with 0–100 mM NaCl did not vary greatly, but 200 mM NaCl reduced the biosynthesis of macromolecules from this ion. The highest rate of conversion of 15NO 3 into macromolecules was observed at 50 mM NaCl. Identification of compatible solutes with NMR-spectroscopy indicated that mannitol is the compatible solute for intact plants of Sonneratia alba, but no accumulation of mannitol was found in calluses, not even in those grown at high concentrations of NaCl.  相似文献   

16.
The effect of elevated CO2 concentration (CE) on leaf chlorophyll (Chl) and nitrogen (N) contents and photosynthetic rate (PN) was evaluated during the post-flowering stages of rice grown at CE (570 ± 50 μmol mol−1) in open top chamber (OTC), at ambient CO2 concentration (∼ 365 μmol mol−1) in OTC and at open field. Thirty-five day old seedlings were transplanted in OTCs or in field and allowed to grow till maturity. Chl and N contents were highest at the time of flowering and thereafter it started to decline. The rate of decline in Chl and N contents was faster in plants grown under CE mostly in later part of growth. Irrespective of treatment difference, flag leaf contained the highest amount of Chl and N than penultimate and third leaf. The higher PN was observed in leaves under CE than in the leaves in other two growing conditions. Considering growth stage, PN was the highest at flowering which reduced at the later part of growth due to degradation of Chl and N content of the leaf. Under CE it was 40.02 μmol m−2 s−1 at flowering and it reduced to only 14.77 μmol m−2 s−1 at maturity stage. The beneficial effect of CE in increasing leaf PN may be maintained by applying extra dose of nitrogen at the later stages of plant growth.  相似文献   

17.
The initial rate ofd-glucosamine uptake by the non-halotolerant yeastSaccharomyces cerevisiae was approximately halved as the apparent half saturation constant (Km) and the apparent maximum velocity (Vmax) changed from 6.6mm to 16.4mm and from 22 μmol · g−1 · min−1 to 16 μmol · g−1 · min−1, respectively, when the salinity in the medium was increased from zerom to 0.68m NaCl. Corresponding changes in a high affinity transport system in the halotolerant yeastDebaryomyces hansenii were from 1.1mm to 4.6mm and from 3.1 μmol · g−1 · min−1 to 4.5 μmol · g−1 · min−1, implying a practically unchanged transport capacity. In 2.7m NaCl, Km and Vmax in this system were 24.5mm and 1.1 μmol · g−1 · min−1, respectively, representing a marked decrease in transport capability. Nevertheless, the degree of affinity in this extreme salinity must still be regarded as noteworthy. In addition to the high affinity transport system inD. hansenii, a low affinity system, presumably without relevance ind-glucosamine transport, was observed.  相似文献   

18.
The influence of ontogeny, light environment and species on relationships of relative growth rate (RGR) to physiological and morphological traits were examined for first-year northern hardwood tree seedlings. Three Betulaceae species (Betula papyrifera, Betula alleghaniensis and Ostrya virginiana) were grown in high and low light and Quercus rubra and Acer saccharum were grown only in high light. Plant traits were determined at four ages: 41, 62, 83 and 104 days after germination. In high light (610 mol m–2 s–1 PPFD), across species and ages, RGR was positively related to the proportion of the plant in leaves (leaf weight ratio, LWR; leaf area ratio, LAR), in situ rates of average canopy net photosynthesis (A) per unit mass (Amass) and per unit area (Aarea), and rates of leaf, stem and root respiration. In low light (127 mol m–2 s–1 PPFD), RGR was not correlated with Amass and Aarea whereas RGR was positively correlated with LAR, LWR, and rates of root and stem respiration. RGR was negatively correlated with leaf mass per area in both high and low light. Across light levels, relationships of CO2 exchange and morphological characteristics with RGR were generally weaker than within light environments. Moreover, relationships were weaker for plant parameters containing a leaf area component (leaf mass per area, LAR and Aarea), than those that were solely mass-based (respiration rates, LWR and Amass). Across light environments, parameters incorporating the proportion of the plant in leaves and rates of photosynthesis explained a greater amount of variation in RGR (e.g. LWR*Amass, R2=0.64) than did any single parameter related to whole-plant carbon gain. RGR generally declined with age and mass, which were used as scalars of ontogeny. LWR (and LAR) also declined for seven of the eight species-light treatments and A declined in four of the five species in high light. Decreasing LWR and A with ontogeny may have been partially responsible for decreasing RGR. Declines in RGR were not due to increased respiration resulting from an increase in the proportion of solely respiring tissue (roots and stems). In general, although LWR declined with ontogeny, specific rates of leaf, stem, and root respiration also decreased. The net result was that whole-plant respiration rates per unit leaf mass decreased for all eight treatments. Identifying the major determinants of variation in growth (e.g. LWR*Amass) across light environments, species and ontogeny contributes to the establishment of a framework for exploring limits to productivity and the nature of ecological success as measured by growth. The generality of these relationships both across the sources of variation we explored here and across other sources of variation in RGR needs further study.  相似文献   

19.
The reproductive phenology of Chondrus ocellatus and the effects of temperature and light on its growth were examined in Cheongsapo near Busan, Korea, from September 1994 to August 1995. The vegetative plants dominated over the year, with a peak occurrence in January. Gameto- and tetrasporophytes were most abundant in November and August. All vegetative and reproductive plants had a peak both in length and weight in October, when seawater temperature was highest (24°C). In laboratory culture, the maximum relative growth rate (RGR) of 2.94% day−1 was obtained at 20°C and 100 μmol photons m−2 s−1, whereas the lowest value was recorded at 25°C and 100 μmol photons m−2 s−1 in a 12: 12 h LD photoperiod regime. Among the three photoperiod regimes (8:16 h, 12:12 h, 16:8 h LD) tested, there was evidence of a higher RGR in the 12:12 h LD cycle. This result suggests that the growth and reproduction of C. ocellatus are correlated with the seawater temperature based on laboratory culture and field observations.  相似文献   

20.
Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) and Haematococcus pluvialis are known as the major prominent microorganisms able to synthesize astaxanthin natural pigment. Important research efforts have been made to determine optimal conditions for astaxanthin synthesis. When the focus is on astaxanthin production, the maximal reported value of 9.2 mg/g cell is obtained within H. pluvialis grown on BAR medium, under continuous illumination (345 μmol photon m−2 s−1) and without aeration. Whereas fermentation by mutated R1 yeast grown on coconut milk produced 1,850 μg/g yeast. However, when looking at astaxanthin productivity, the picture is slightly different. The figures obtained with P. rhodozyma are rather similar to those of H. pluvialis. Maximal reported values are 170 μg/g yeast per day with a wild yeast strain and 370 μg/g yeast per day with mutated R1 yeast. In the case of H. pluvialis, maximal values ranged from 290 to 428 μg/g cell per day depending on the media (BG-11 or BAR), light intensity (177 μmol photon m−2 s−1), aeration, etc. The main aim of this work was to examine how astaxanthin synthesis, by P. rhodozyma and H. pluvialis, could be compared. The study is based on previous works by the authors where pigment productions have been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号