首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
The epicuticular waxes of the two sorghum varieties Alliance A and SD 102 have been analyzed, after separation of the leaf blades from the sheaths. The major constituents were found to be free fatty acids but small amounts of esters, aldehydes, alcohols, n-alkanes and sterols were also detected. The typical chain lengths of aldehydes, free alcohols and free fatty acids were C28 and C30.  相似文献   

2.
In corn seedlings (Zea mays L.) homozygous for the mutation gl5, the surface waxes are characteristically altered. In this mutant the main wax constituents (83.5%) are aldehydes while in the normal waxes alcohols predominate (62.7%). Moreover, in the normal waxes aldehydes and alcohols are made up mainly of the C32 term (99%), whereas in gl5 waxes the principal aldehyde is still C32 (90.7%) but the free alcohol composition pattern is noticeably modified. Here the predominant terms are C24, C26, and C28, with C32 representing only 16.6% of the total. The results indicate that the mutant induces a block in the synthesis of fatty alcohols while accumulating fatty aldehydes, the substrates from which the alcohols originate.  相似文献   

3.
Wax from the glll mutant of maize lacks aldehydes, which constitute 20 % in the normal genotype. The absence of aldehydes is not associated with a block in the synthesis of alcohols. Moreover in contrast to the wild type, glll wax is characterized by a higher content of C16 and C18 free acids, with a clear defect in the synthesis of C24, C26 and C28 homologues. The results from this study are taken as evidence that the wild type elongation-decarboxylation I (EDI) pathway, leading to the synthesis of all the wax classes of compounds except esters, may be split into an early (EDIa) and a late (EDIb) group of reactions. Mutant glll is apparently defective at the EDIa, governing the synthesis of C24–C28 fatty acyl chains.  相似文献   

4.
M.J.K. Macey 《Phytochemistry》1974,13(8):1353-1358
Two different mutations in Brassica oleracea, gl5 and gl4 have been re-investigated using acetate-1-14C labelling in an attempt to define more closely the nature of the genetic blocks to wax synthesis. It has been found that gl5 is a mutation which blocks elongation in the Step C28–C30. The mutation gl4 exhibits no elongation block and could be blocked in the decarboxylation Step C30–C29. 0·1 mM TCA supplied in the culture solution of cauliflower seedlings affected the leaf surface by producing a glossy appearance similar to that induced by gl3 and gl4. At this concentration growth was not inhibited and the appearance of the plants was normal except for the surface wax. The amount of surface wax produced was about 40% of that in untreated seedlings on a leaf area basis. Slight, but significant changes in wax composition were noted, mainly involving a reduction in C30 acids and aldehydes, a slight reduction (33–29%) in alkane content, and a marked difference in chain length composition of the alkanes with C27 increased relative to C29. Over a range of concentrations from 0·1–1 mM, TCA inhibited incorporation of label from acetate-1-14C into C30 acids and aldehydes more than into C28 at concentrations 0·4–0·8 mM while label tended to accumulate in C24 and C26 acids; thus elongation C28–C30 was especially sensitive to TCA. TCA also inhibited incorporation into primary alcohols and esters almost as much as into C29 compounds. In spite of relatively specific effects on incorporation of label into longer chain lengths, the resulting block to C30 synthesis is not sufficient to make much difference to the overall rate of C29 synthesis. Both results of analysis of wax from whole plants and experiments with tissue slices in vitro indicated that the effect of TCA in reducing the glaucousness of the leaf surface is a combination of overall reduction of wax synthesis together with slight but significant changes in wax composition.  相似文献   

5.
Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and β-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.  相似文献   

6.
The composition of cuticular wax from plants of spring wheat (varieties Selkirk and Manitou) and of durum wheat (variety Stewart 63) at various stages of growth, and of wax from different parts of the plants varies considerably. Wax was analysed, without preliminary separation, by GLC using Dexsil 300 as liquid phase. Alcohols are major components of wax from leaf blades and β-diketones are major components of wax from leaf sheaths, especially the flag leaf sheath. Glaucousness of the leaf sheath is due to the high β-diketone content. In the first 50 days after germination, before sheaths and flag leaf are completely developed, the major component is octacosanol (> 50%). At 66 days, when sheath development is complete, β-diketone content is greatest. Hydrocarbon composition differs for wax from leaf blade and leaf sheath and also for different leaf blades and between adaxial and abaxial sides of the flag leaf. From 66 to 100 days ester content of wax increases, especially in Selkirk wheat, apparently due to formation of wax containing high proportions of esters of trans-α,β-unsaturated C22 and C24 acids. The content of these acids in the free fatty acids and of diesters based on these acids also increases during this period.  相似文献   

7.
D.R. Body 《Phytochemistry》1974,13(8):1527-1530
The neutral lipids of white clover leaves and stems have been separated into wax esters, free fatty acids, free fatty alcohols, free sterols, triglycerides and hydrocarbons. The wax esters were mainly of C18 di- and tri-unsaturated fatty acids and C30 fatty alcohol. Linolenic acid was the predominant free fatty acid and triacontanol was the principal free fatty alcohol. Of the hydrocarbons, C29 and C31 were present in the largest amounts.  相似文献   

8.
《Phytochemistry》1999,52(7):1239-1254
Epicuticular waxes from the aphid-resistant red raspberry (Rubus idaeus) cultivar Autumn Bliss and the aphid-susceptible cultivar Malling Jewel were collected from the newly emerging crown leaves, and also from the group of four more mature leaves immediately below the crown. Resistance and susceptibility status of the leaves to infestation by the large raspberry aphid, Amphorophora idaei, were determined by bioassay with the insect just prior to collection of the wax. Analysis showed the waxes to consist of a complex mixture of free fatty acids; free primary alcohols and their acetates; secondary alcohols; ketones; terpenoids including squalene, phytosterols, tocopherol and amyrins; alkanes and long chain alkyl and terpenyl esters. Compositional differences which may relate to A. idaei-resistance status were noticeably higher levels of sterols, particularly cycloartenol, together with the presence of branched alkanes, and an absence of C29 ketones and the symmetrical C29 secondary alcohol in wax from the resistant cultivar Bliss. There were also differences between the cultivars in the distribution of individual amyrins and tocopherols and in the chain length distribution for homologues of fatty acids, primary alcohols and alkanes, and these may also be related to resistance to A. idaei. Emerging leaves had lower levels of primary alcohols and terpenes, but higher levels of long-chain alkyl esters, and in general, more compounds of shorter chain-length than the more mature leaves. During bioassay A. idaei displayed a preference to settle on the more mature leaves. This may be due to greater wax coverage and higher levels of the compounds of shorter chain length found in the newly emerged younger leaves at the crown of the plant.  相似文献   

9.
Sodium [1-14C]acetate and [1-14C]stearic acid were readily incorporated into hydrocarbons, secondary alcohols, wax esters, aldehydes, primary alcohols, and fatty acids in young pea leaves (Pisum sativum). Dithioerythritol, dithiothreitol, and mercaptoethanol (but not glutathione and cysteine) severely inhibited the incorporation of labeled acetate into alkanes and secondary alcohols with accumulation of label in wax ester and aldehyde fractions. Detailed radio gas-chromatographic analyses of the fatty acids of both the surface lipid components and internal lipids showed that dithioerythritol and mercaptoethanol specifically inhibited n-hentriacontane (C31) synthesis and caused accumulation of C32 aldehyde, suggesting that the inhibition was at or near the terminal step in alkane biosynthesis, presumably decarboxylation. Trichloroacetate, at a concentration that inhibited C31 alkane synthesis but not the synthesis of alcohols (C26 and C28) specifically inhibited the formation of C32 aldehyde but not that of the C26 or C28 aldehyde. From these results, it is concluded that the C32 aldehyde is derived from the C32 acyl derivative which is the precursor of C31 alkane.  相似文献   

10.
Klaus Haas 《Phytochemistry》1982,21(3):657-659
The mosses Andreaea rupestris, Pogonatum aloides and P. urnigerum contain surface waxes in amounts of 0.05–0.12% dry wt. The waxes consisted of esters (C38-C54), primary alcohols (C20-C32), free fatty acids (C16-C30), and alkanes (C21-C31). Additionally, aldehydes (C22-C30) were major constituents in the wax of P. urnigerum. The classes and their chain length distributions in the surface waxes of these mosses are comparable to those of epicuticular waxes of higher plants.  相似文献   

11.
The total surface lipids, including the wax particles, of the adult whiteflies of Bemisia tabaci and Trialeurodes vaporariorum were characterized. At eclosion, there were similar amounts of long-chain hydrocarbons, aldehydes, alcohols and wax esters. Within a few hours post-eclosion, long-chain aldehydes and long-chain alcohols were the dominant surface lipid components, C34 on B. tabaci and C32 on T. vaporariorum. Hydrocarbons, mainly n-alkanes, were minor components of the surface lipids. The major wax esters were C46 on B. tabaci and C42 on T. vaporariorum. The major acid and alcohol moieties in the wax esters of B. tabaci were C20 and C26, respectively, and of T. vaporariorum were C20 and C22, respectively. Both B. tabaci and T. vaporariorum had a minor wax ester composed of the fatty acid C18:1 esterified to the major alcohols, C34 and C32, respectively. Bemisia were readily distinguished from Trialeurodes based on the composition of their wax particles and/or their wax esters; however, no differentiating surface lipid components were detected between biotypes A and B of B. tabaci.  相似文献   

12.
Intraspecific variation in four New Zealand species of Chionochloa, C. flavescens, C. pallens, C. rigida; and C. rubra, was investigated by examining the major carbon chain lengths of fatty acids, alcohols, aldehydes, wax esters and alkanes of the epicuticular waxes. The major even-carbon chain lengths ranged generally from C24 to C32 in the acids, alcohols and aldehydes; C29 to C33 in the alkanes; and even-carbon chains between C36 and C52 in the wax esters. A computer program was used to calculate the degree of similarity between samples in terms of chain length distribution. In C. rigida eastern and western South Island localities were identified; in C. flavescens Canterbury and Nelson, western South Island and southern North Island regions were recognized; and C. pallens and C. rubra were divisible into four regions; Canterbury, Nelson, western South Island and southern North Island. The possible elongation-decarboxylation pathways and the specificity of the enzymes in the biosynthetic pathways of epicuticular wax synthesis suggest the possibility that the northwest Nelson region could be a biogenetic centre from which wax synthesis has diversified along three routes, one to the western South Island, another to eastern South Island and the third to southern North Island. Identification of each of the four species based on the distribution of the carbon chain lengths in the individual lipid fractions is impossible unless the locality of collection is known. Intraspecific variation in lipid composition is not coincident with patterns of variation already reported.  相似文献   

13.
Pinarosa Avato 《Planta》1984,162(6):487-494
Experimental evidence for a membranebound microsomal ester synthetase from Bonus barley primary leaves is reported. The results are consistent with at least two mechanisms for the synthesis of barley wax esters: an acyl-CoA-fattyalcohol-transacylase-type reaction and an apparent direct esterification of alcohols with fatty acids. Biosynthesis of wax esters was not specific with regard to the chain length of the tested alcohols. The microsomal preparation readily catalyzed the esterification of C16-, C18-, C22- or C24-labelled alcohols with fatty acids of endogenous origin. Exogenous long-chain alcohols were exclusively incorporated into the alkyl moieties of the esters. Addition of ATP, CoA and-or free fatty acids was not effective in stimulating or depressing the esterifying activity of the microsomal fraction. Partial solubilization of the ester synthetase was obtained using phosphate-buffered saline.Abbreviations P pellet - PBS phosphate-buffered saline - S supernatant - SDS sodium dodecyl sulphate  相似文献   

14.
Sixty-seven compounds were characterized in the wax of Sargassum fulvellum. Characteristic components were the 5-methylhexyl esters of octanoic, decanoic, lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic and linolenic, and the 2-ethylhexyl esters of the same acids. The wax of S. fulvellum contains hydrocarbons (1.6%), esters (21.8%), free acids (74.9%) and free alcohols (0.3%). The principal free alcohols range in chain length only from C6 to C7.  相似文献   

15.
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (P N) but increased the stomata conductance (g s), concentrations of intercellular CO2 (C i ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of P N, and increase of g s, C i and E in leaves.  相似文献   

16.
Wax on leaves of rye and of hexaploid Triticale (60–70-day-old plants) contains hydrocarbons (6–8%), esters (10%), free alcohols (14-8%), free acids (3%), hentriacontane-14,16-dione (39–45%), 25 (S)-hydroxyhentriacontane-14,16-dione (13–11%) and unidentified (14–15%). Diesters (1–3%) are also present in rye wax. Compositions of hydrocarbons (C27-C33) and esters (C28,C58) are similar for both waxes. Free and combined alcohols of rye wax are mainly hexacosanol but alcohols of Triticale wax are mainly octacosanol. The composition of Triticale wax is close to that of its wheat parent Triticum durum (cv. Stewart 63). Esters of wax from ripe rye contain 58% of trans 2,3-unsaturated esters. *NRCC No. 14033.  相似文献   

17.
A homologous series of long-chain secondary fatty alcohols from C21 to C29 (C29 being Predominant) has been isolated from the skin wax of a Bulgarian apple variety, Bouhavitsa. The alcohols were found only in a free state. Long-chain fatty ketones, with C29 again markedly prevalent, have been isolated for the first time from the skin wax of this, and another variety, Tetovka. The C29-ketone from both samples was identified by means of MS as nonacosan-10-one. A complete similarity has been found in the relative amounts of C29 in the mixtures of secondary alcohols, ketones and paraffins.  相似文献   

18.
Leaf waxes from spring wheat varieties Selkirk and Manitou contain hydrocarbons (6%, 10%), long chain esters (14%, 13%), free acids (5%, 8%), free alcohols (19%, 21%), β-diketone (16%, 20%), hydroxy β-diketones (8%, 10%), unidentified gum (29%, 16.5%) and minor amounts of diol diesters, glycerides and aldehydes. The major hydrocarbon is nonacosane and major esters are octacosyl esters of C14–C32 acids but C20 and C22 alcohol esters of trans 2-docosenoic and tetracosenoic acids are also present (Selkirk 20%, Manitou 10% of total esters). Previously unknown trans 2-docosen-1-ol is present as an ester (Selkirk 5%, Manitou 2.5% of total esters). Free acids are C14–C32 acids and trans 2-docosenoic and tetracosenoic acids (Selkirk 30%, Manitou 9% of free acids). Octacosanol is the principal free alcohol. Hentriacontane-14,16-dione is the β-diketone and the hydroxy β-diketones are a 1:1 mixture of 8- and 9- hydroxyhentriacontane-14,16-diones.  相似文献   

19.
Newly isolated Acinetobacter (NRRL B-14920, B-14921, B-14923) and coryneform (NRRL B-14922) strains accumulated oleyl oleate and homologous liquid wax esters (C30:2–C36:2) in culture broths. Diunsaturated oleyl oleate preponderated in 75 mg liquid wax esters (280 mg lipid extract) recovered from 100-ml cultures of Acinetobacter B-14920 supplemented with 810 mg oleic acid–oleyl alcohol. With soybean oil instead of oleic acid, wax esters (260 mg) were increased to approximately 50% of the lipid extract. Production of wax esters by cultures supplemented with combined fatty (C8–C18) alcohols and acids suggests a coordinated synthesis whereby the exogenous alcohol remains unaltered, and the fatty acid is partially oxidized with removal of C2 units before esterification. Consequently, C8–C18 primary alcohols control chain lengths of the wax esters. Exogenous fatty acids are presumed to enter an intracellular oxidation pool from which is produced a homologous series of liquid wax esters.  相似文献   

20.
Leaf and stem wax of Panicum virgatum contains hydrocarbons (4%), esters (3%), free acids (2%), free alcohols (1%), triterpene alcohols (2%), β-diketones (69%) and hydroxy β-diketones (6%). Principal free alcohols range in chain length from C26 to C32. β-Diketones consist almost entirely of tritriacontane-12,14-dione and the hydroxy β-diketone consists only of 5(S)-5-hydroxytritriacontane-12,14-dione. The configuration of the hydroxyl group is the same as that of hydroxy β-diketones from festucoid grasses but opposite to that of the hydroxy β-diketone from Andropogon species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号