首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Detergent-resistant phospholipase A, which is tightly bound to the outer membranes of Escherichia coli K-12 cells, was purified approximately 2000-fold to near homogeneity by solubilization with sodium dodecylsulfate and butan-1-ol, acid precipitation, acetone fractionation and column chromatographies on Sephadex G-100 in the presence of sodium dodecylsulfate and on DEAE-cellulose in the presence of Triton X-100. The final preparation showed a single band in the sodium dodecylsulfate gel system. The enzyme hydrolyzes both the 1-acyl and 2-acyl chains of phosphatidylethanolamine or phosphatidylcholine. It also attacks 1-acyl and 2-acylglycerylphosphorylethanolamine. Thus, this enzyme shows not only phospholipase A1 and lysophospholipase L1 activities but also phospholipase A2 and lysophospholipase L2 activities. The enzyme lost its activity completely on incubation at 80 degrees C for 5 min at either pH 6.4 or pH 8.0. It was stable in 0.5% sodium dodecylsulfate at below 40 degrees C. The enzyme was inactivated on incubation for 5 min at 90 degrees C in 1% sodium dodecylsulfate/1% 2-mercaptoethanol/4 M urea. The native and inactivated enzymes showed different protein bands with RF values corresponding to Mr 21 000 and Mr 28 000 respectively, in a sodium dodecylsulfate gel system. Triton X-100 seemed to protect the enzyme from inactivation. The purified enzyme was fully active on phosphatidylethanolamine in the presence of 0.0002% or 0.05% Triton X-100. The enzyme requires Ca2+. From its properties this enzyme seems to be identical with the enzyme purified from crude extracts of Escherichia coli B by Scandella and Kornberg. However, it differs from the latter in its positional specificity and susceptibility to sodium dodecylsulfate. Possible explanation of the difference of positional specificity of the two preparations is also described.  相似文献   

2.
H Milnerowicz  A Szewczuk 《Enzyme》1984,32(4):208-217
By digestion of detergent-solubilized gamma-glutamyltransferase (GGT), isolated from bovine kidney with bromelain, the liberation of 4 protein fragments was demonstrated. The fragment migrating most quickly in gel electrophoresis showed gamma-glutamyltranspeptidase activity and the most slowly migrating fragment showed peptidase activity. Protease-solubilized GGT is a sialoprotein with a molecular weight of 95,000. After treatment with sodium dodecylsulfate it was separated into two unequal subunits with molecular weights of 26,000 and 69,000. Sugar components were found only in the heavy subunit. Some catalytic differences were found between the two solubilized GGT forms. The immunoprecipitate obtained from detergent-solubilized GGT retained about 50% of the initial enzyme activity. The enzyme is inactivated with phenylmethanesulfonyl fluoride in the presence of maleate and with 6-diazo-5-oxo-L-norleucine.  相似文献   

3.
The isolation of a xanthine dehydrogenase from Pseudomonas putida 40 which utilizes ferricyanide as an electron acceptor at high efficiency is presented. The new activity is separate from the NAD+ and oxygen-utilizing activities of the same organism but displays a broad pattern for reducing substrates typical of those of previously studied xanthine-oxidizing enzymes. Unlike the previously studied enzymes, the new enzyme appears to lack flavin but possess heme and is resistant to cyanide treatment. However, sensitivity of the purified enzyme to methanol and the selective elimination of the activity when tungstate is added to certain growth media suggest a role for molybdenum. The enzyme is subject to a selective proteolytic action during processing which is not accompanied by denaturation or loss of activity and which is minimized by the continuous exposure of the activity to EDTA and phenylmethylsulfonyl fluoride. Electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate suggests that the enzyme is constructed of subunits with a molecular weight of approximately 72,000. Electrophoresis under native conditions of a purified enzyme previously exposed to magnesium ion reveals a series of major and minor activity bands which display some selectivity toward both electron donors and acceptors. An analysis of the effect of gel concentration on this pattern suggests that the enzyme forms a series of charge and size isomers with a pair of trimeric forms predominating. Comparison of the rate of sedimentation of the enzyme in sucrose gradients with its elution profile from standardized Sepharose 6B columns suggests a molecular weight of 255,000 for the major form of the native enzyme.  相似文献   

4.
Dextransucrase [EC 2.4.1.5] activity from cell-free culture supernatant of Leuconostoc mesenteroides NRRL B-1299 was purified by (NH4)2SO4 fractionation, adsorption on hydroxyapatite, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The extracellular enzyme was separated into two principal forms, enzymes I and N, and the latter was shown to be an aggregated form of the protomer, enzyme I. Enzymes I and N were both electrophoretically homogeneous and their relative activities reached 820 and 647 times that of the culture supernatant, respectively. On sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis, enzyme N dissociated into the protomer enzyme I, with a molecular weight of 48,000. Enzyme I was gradually converted into enzyme N upon aging, and this conversion was stimulated in the presence of NaCl. The optimum pH and temperature of enzyme I activity were pH 6.0 and 40 degrees, respectively, while those of enzyme N were pH 5.5 and 35 degrees. The Km values of enzymes I and N were 13.9 and 13.1 mM, respectively. Ca2+, Mg2+, Fe2+, and Co2+ stimulated the activity of enzyme N, and EDTA showed a potent inhibitory effect on this enzyme. Moreover, the activity of enzyme N was more effectively stimulated by exogenous dextrans as compared with enzyme I.  相似文献   

5.
The purification of creatine kinase from beef heart mitochondria is described. The purified enzyme appears as a single band after electrophoresis on SDS gels. Electrophoresis on cellulose acetate followed by staining for creatine kinase activity shows two forms of the enzyme. The slower migrating (m-1) form upon concentration is converted to the more rapidly migrating form (m-2). The reverse conversion occurs if the m-2 is incubated with β-mercaptoethanol. These results are consistent with a reversible oxidation of protein sulfhydryl group (s).  相似文献   

6.
1. NAD(+)-dependent succinic semialdehyde dehydrogenase was purified to apparent homogeneity from rat brain and highly purified from human brain. 2. Molecular exclusion chromatography of the purified enzymes on Sephadex G-150 and G-200 revealed M(r) values of 203,000 and 191,000 for rat and human, respectively. 3. Electrophoresis on sodium dodecylsulfate polyacrylamide gels revealed a single subunit of M(r) 54,000 for rat and 58,000 for human. Isoelectric focusing of the purified rat enzyme yielded a pI of 6.1. 4. For both proteins, Km values for short-chain aldehydes acetaldehyde and propionaldehyde ranged from 0.33 to 2.5 mM; Km values for succinic semialdehyde were in the 2-4 microM range. 5. The subunit structure of both enzymes was investigated in brain extracts and purified preparations by immunoblotting, using a polyclonal rabbit antiserum against the purified rat brain enzyme. 6. For rat and human extracts, single bands were detected at M(r) 54,000 and 58,000, comparable to findings in the purified preparations. Immunoblotting analyses in other species (guinea pig, hamster, mouse and rabbit) revealed single subunits of M(r) 54,000-56,500.  相似文献   

7.
Glyoxalase II has been purified from cytosol and mitochondria of spinach leaves. Electrophoresis and isoelectric focussing have resolved cytosolic and mitochondrial glyoxalase II in multiple forms: pl 5.3, 5.8 and 6.2 (cytosol) and pl 4.8 (mitochondria). The enzyme of both localizations is a monomer showing a relative molecular mass of about 26 kDa. The values of kinetic constants using several glutathione thiolesters as substrates, are similar for the enzymes from cytosol and mitochondria. These results extend also to plant the presence in mitochondria of peculiar forms of glyoxalase II, likewise recently demonstrated in mammalians.  相似文献   

8.
3-Hexulosephosphate synthase, the first enzyme of the ribulose monophosphate cycle, was purified 15-fold from methanol-grown Methylomonas M 15. The purification procedure involved chromatography on DEAE-cellulose, Sephadex G-75, and DEAE-Sephadex A-50. The purified enzyme was more than 95% pure as judged by analytical polyacrylamide gel electrophoresis. The molecular weight was calculated to be 43000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels gave a single band corresponding to a molecular weight of 22000. The enzyme catalyzes specifically the condensation formaldehyde with ribulose 5-phosphate to yield D-arabino-3-hexulose 6-phosphate. The Km values were found to be 1.1 mM for formaldehyde and 1.6 mM for ribulose 5-phosphate. A bivalent cation is essential for activity and stability of the enzyme, Mg2+ and Mn2+ serve best for this purpose. The optimum of pH for enzyme activity is 7.5--8.0.  相似文献   

9.
Alkaline phosphatase (E.C.3.1.3.1.) has been used as a marker for embryonal carcinoma cells which constitute the multipotential stem cells of the mouse teratoma. Studies by other investigators based on kinetics of thermal inactivation and L-phenylalanine inhibition have shown that the alkaline phosphatase of the teratoma differs from the mouse intestinal and liver isozymes, but resembles the isozymes of kidney and placenta. Since functional characterization of nonpurified enzymes is not the most accurate means for distinguishing different molecular forms of an enzyme, we have partially purified the enzymes from the ascitic (embryoid body) and solid tumor forms of the OTT-6050 teratoma line, and utilized the technique of electrophoresis in polyacrylamide gels to compare the teratoma enzyme with isozymes from kidney and placenta. Covalent 32PO4-labeling of the alkaline phosphatases and polyacrylamide gel electrophoresis in sodium dodecylsulfate was also used to compare the subunit molecular weights of the enzymes. The results indicate that the mouse teratoma enzyme is distinct from the kidney and placental isozymes. Since histochemical studies have localized the enzyme to the stem cell population of the teratoma, the results imply that stem cell alkaline phosphatase is a distinct isozyme. The embryoid bodies contain a second alkaline phosphatase which may correspond to the placental isozyme. This enzyme may be attributed to the outer cell layer of embryoid bodies of the ascitic tumor, since this cell type histochemically demonstrates alkaline phosphatase activity.  相似文献   

10.
Two forms of succinic-semialdehyde dehydrogenase have been isolated in Pseudomonas putida. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 200,000 and 100,000. The smaller enzyme, which is induced by growth on 4-hydroxyphenylacetate, has been purified to 88% homogeneity by anion-exchange and affinity chromatography. Electrophoresis in sodium dodecyl sulphate gave rise to a molecular weight of 53,000, indicating that the native enzyme is dimeric. Under standard assay conditions this enzyme acts preferentially with NAD but reduces NADP at 9% of the rate observed for NAD. The large enzyme, which is dependent on NADP, is induced by growth on putrescine and its induction is highly coordinated with putrescine: 2-oxoglutarate transaminase, gamma-amino-butyraldehyde dehydrogenase and gamma-aminobutyrate: 2-oxoglutarate transaminase activities. Activity and stability conditions and true Km values for substrate and cosubstrates of the two enzymes were determined.  相似文献   

11.
The molecular mass of 1-aminocyclopropane-1-carboxylate (ACC)synthase from a variety of sources was examined by both high-performancegel-filtration chromatography and polyacryl-amide gel electrophoresisin the presence of sodium dodecylsulfate. Enzymes used wereprepared from wounded or non-wounded pericarp of ripe tomatofruits and wounded mesocarp of winter squash fruits, as wellas from cells of E. coli that had been transformed with cDNAsfor the wound-induced or ripening-induced ACC synthases of tomatoand the wound-induced or auxininduced enzymes from winter squash.The enzymes from tomato fruit tissues were isolated in a monomericform, whereas the enzymes synthesized in E. coli from cDNAsfor tomato ACC synthase were isolated in a dimeric form. ACCsynthases of winter squash obtained either from fruit tissuesor from transformed E. coli cells were isolated in dimeric forms.ACC synthase in the monomeric form was less sensitive to theinactivation that is associated with the catalytic reaction(the mechanism-based inactivation) than the enzyme in the dimericform. A plausible mechanism relating the difference in molecularform to sensitivity to the mechanism-based inactivation of tomatoACC synthase is discussed. (Received February 1, 1993; Accepted May 17, 1993)  相似文献   

12.
1. Alcohol oxidase (alcohol:oxygen oxidoreductase) was purified 22-fold from the brown rot fungus Poria contigua. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis, and by sedimentation in an ultracentrifuge. The molecular weight was calculated to be 610000 +/- 5000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels and electron microscopic analysis indicate that the enzyme is an octamer composed of eight probably identical subunits, each having a molecular weight of 79 000. The enzyme contains eight mol FAD/mol as the prosthetic group. 2. This alcohol oxidase oxidizes not only methanol but also lower primary alcohols (C2-C4), 2-propin-1-ol and formaldehyde. The apparent Km value for methanol is 0.2 mM, and that for formaldehyde 6.1 mM. Sodium azide was found to be a competitive inhibitor with respect to methanol. 3. The enzyme from the fungus Poria contigua is immunologically different from the alcohol oxidase isolated from the methanol-utilizing yeast Candida boidinii. Furthermore antiserum raised against this enzyme did not cross-react with the alcohol oxidase from the white rot fungus Polyporus obtusus.  相似文献   

13.
Purification of tRNa nucleotidyltransferase from Lactobacillus acidophilus ATCC 4963 and Escherichia coli MRE 600 by preparative polyacrylamide gel electrophoresis is described. Both enzymes gave a single band on analytical polyacrylamide-gel electroesis and sodium dodecylsulfate gels. Chromatography of the high speed supernatant from Lactobacillus at low salt concentrations gave three enzyme fractions of molecular weights about 45 000, 90 000, and 120 000. At 1M NaCl only the first enzyme fraction was found. Kinetic data for both enzymes are given.  相似文献   

14.
Escherichia coli B, grown under aerobic conditions, contains at least three distinct superoxide dismutases, which can be visualized on polyacrylamide gel electropherograms of crude soluble extracts of the sonically disrupted cells. Of these, the slowest migrating and the fastest migrating, respectively, have previously been isolated and characterized as manganese-containing and iron-containing enzymes. The enzyme form with medium electrophoretic mobility has now been purified to homogeneity. Its molecular weight is approximately 37,000 and it contains 0.8 atoms of iron/molecule and only negligible amounts of manganese. Like other iron-containing superoxide dismutases and unlike the corresponding manganienzymes, it is inactivated by EDTA plus H2O2. Its specific activity is comparable to that of the other superoxide dismutases of E. coli. Two types of subunits could be distinguished upon electrophoresis in the presence of sodium dodecyl sulfate. One of these migrated identically with the subunit obtained from the manganisuperoxide dismutase, while the other similarly appeared identical with the subunit from the ferrisuperoxide dismutase. This newly isolated enzyme thus appears to be a hybrid of the other two forms. In support of this conclusion, we observed that ultrafiltration or storage of the new superoxide dismutase gave rise to the mangani- and ferrienzymes on disc gel electrophoresis or isoelectric focussing.  相似文献   

15.
Human rheumatoid synovial cells in culture stimulated with the conditioned culture medium of rabbit macrophages secrete three distinct latent metalloproteinases. One of them, a proteinase that digests proteoglycan and other connective tissue matrix components, was purified as two active forms after activation with 4-aminophenylmercuric acetate. The two forms were homogeneous on sodium dodecyl sulfate-gel electrophoresis with Mr = 45,000 and Mr = 28,000, whereas the latent precursor was estimated to have Mr = 51,000 by gel permeation chromatography. Both active enzymes had optimal activity at pH 7.5-7.8 and were inhibited by EDTA and 1,10-phenanthroline but not by inhibitors for cysteine, serine, or aspartic proteinases. Removal of Ca2+ from the enzyme solution resulted in a complete loss of activity that could be fully restored by the addition of 1 mM Ca2+. The activity of the apoenzyme was restored by the addition of 0.5 mM Zn2+, 5 mM Co2+, or 5 mM Mn2+ in the presence of Ca2+ but not by each metal ion alone. The identical digestion patterns of reduced, carboxymethylated protein substrates indicated that both active forms of the enzyme have the same substrate specificity. The enzyme degraded cartilage proteoglycans, type I gelatin, type IV collagen, laminin, and fibronectin, and removed the NH2-terminal propeptides from chick type I procollagen. This enzyme may play a role in the normal turnover of the connective tissue matrix as well as in the joint destruction of chronic synovitis.  相似文献   

16.
A rat osteosarcoma cell clone (ROS 17/2), and osteoblast-enriched populations from rat calvaria cultured in the presence of concanavalin A, have been shown to produce latent collagenase and collagenase inhibitors. The enzymes and inhibitor activities from the ROS 17/2 cells were concentrated by ammonium sulphate precipitation and separated by gel filtration on AcA 54 resin. The size of the latent collagenase (Mr approximately equal to 58000) was reduced on conversion to active enzyme (Mr approximately equal to 48000) by p-aminophenylmercuric acetate. Latent and active forms of gelatinase activity, similar in size to the corresponding forms of collagenase, were also resolved. The collagenase inhibitor activity, which was sensitive to organomercurials, was recovered in two peaks (Mr approximately equal to 68000 and 30000). The active collagenase cleaved interstitial collagens (type I = III greater than II) producing typical 3/4 and 1/4 fragments. This activity was inhibited by the metal ion chelators ethylenediaminetetraacetic acid and o-phenanthroline. Additional specific cleavages of native collagen were also observed which, from the susceptibility of this activity to phenylmethylsulphonyl fluoride, leupeptin and antipain, suggested the presence of a second collagenolytic enzyme. This synthesis of collagenolytic enzymes by these osteoblast-like cells suggests that individual osteoblasts, like fibroblasts, are capable of both synthesizing and degrading their respective organic matrices in vivo.  相似文献   

17.
Two types of cathepsin D were purified from rat spleen by a rapid procedure involving an acid precipitation of tissue extract, affinity chromatography with pepstatin--Sepharose 4B and concanavalin-A--Sepharose 4B, and chromatography on Sephadex G-100 and DEAE-Sephacel. The purified major enzyme (85% of the cathepsin D activity after DEAE-Sephacel chromatography), termed cathepsin D-I, represented about a 1000-fold purification over the homogenate and about a 20% recovery. The purified minor enzyme (15%), termed cathepsin D-II, represented about a 900-fold purification and about a 3% recovery. Both enzymes showed four (pI: 4.2, 4.9, 6.1 and 6.5) and three (pI: 4.6, 5.6 and 5.8) multiple forms after isoelectric focusing, respectively. The purified enzymes appeared homogeneous on electrophoresis in polyacrylamide gel and had a molecular weight of about 44000. In sodium dodecylsulfate/polyacrylamide gel electrophoresis both enzymes showed a single protein band corresponding to a molecular weight of 44000. The enzymes had similar amino acid compositions except for serine, proline and methionine. Cathepsin D-I contained 6.6% carbohydrate, consisting of mannose, glucose, galactose, fucose and glucosamine in a ratio of 8:2:1:1:5 with a trace of sialic acid. The properties of purified enzymes were also compared.  相似文献   

18.
Hydrolysis of the gentisate ring-cleavage product, maleylpyruvate (cis-2,4-diketohept-5-enedioic acid), was shown to be catalyzed by an enzyme, maleylpyruvate hydrolase 11, in Pseudomonas alcaligenes (P25X1) after growth with 3-hydroxybenzoate. This activity was separated from fumarylpyruvate hydrolase activity during the course of its purification which accomplished an approximately 50-fold increase in specific activity. An apparent molecular weight of 77,000 was assigned on the basis of Sephadex G-200 chromatography. Despite the presence of up to three similarly migrating bands of protein on polyacrylamide-gel electrophoresis of the purified enzyme, at least two of these bands possessed maleylpyruvate hydrolase activity. Electrophoresis on sodium dodecyl sulfate-polyacrylamide before and after reduction with mercaptoethanol gave a principal band of molecular weight of 33,000 (and a minor band of molecular weight 50,000). A number of substituted maleylpyruvates also served as substrates for maleylpyruvate hydrolase 11, but maleylacetoacetate and fumarylpyruvate were not attacked. Fumarylpyruvate hydrolase was purified approximately 40-fold to give a single band on polyacrylamide gels and with an apparent molecular weight of 73,000 by Sephadex G-200 chromatography. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis before or after reduction with mercaptoethanol, a subunit molecular weight of 25,000 was obtained. Neither maleylpyruvate nor fumarylacetoacetate served as substrates for fumarylpyruvate hydrolase. The activities of both maleyl- and fumarylpyruvate hydrolases were stimulated by Mn2+ ions. Reasons are discussed for the presence of both enzyme activities, one of which appears to be redundant.  相似文献   

19.
Deoxynucleoside monophosphate kinase (dNMP kinase) of bacteriophage T5 (EC 2.7.4.13) was purified to apparent homogeneity from phage-infected Escherichia coli cells. Electrophoresis in sodium dodecyl sulfate-polyacrylamide gel showed that the enzyme has a molecular mass of about 29 kDa. The molecular mass of dNMP kinase estimated by analytical equilibrium ultracentrifugation turned out to be 29.14 +/- 3.03 kDa. These data suggest that the enzyme exists in solution as a monomer. The isoelectric point of dNMP kinase was found to be 4.2. The N-terminal amino acid sequence, comprising 21 amino acids, was determined to be VLVGLHGEAGSGKDGVAKLII. A comparison of this amino acid sequence and those of known enzymes with a similar function suggests the presence of a nucleotide-binding site in the sequenced region.  相似文献   

20.
Electrophoresis of hydrolytic enzymes under nondenaturing conditions on acrylamide gels containing the appropriate high-molecular-weight substrates entrapped on the gel has been explored as a general method for sensitive enzyme resolution and detection. Under electrophoresis conditions of optimal enzyme activity, the enzymes may bind tightly to the fixed substrate and can only migrate in the electrophoretic field as the substrate is hydrolyzed. When the gels after electrophoresis in this “binding mode” are stained with substrate-detecting reagents, clear tracks of enzyme migration are observed, and the length of each track is a function of the amount of enzyme present in that track. Multiple forms of a given enzyme activity have not been and are not likely to be observed under these conditions. Under electrophoresis conditions of minimal (or suboptimal) enzyme activity, the enzymes do not bind to the fixed substrate and their mobility in the electrophoretic field does not appear to be significantly affected by the presence of substrate. After electrophoresis in this “nonbinding mode” the gels are incubated under conditions of optimal enzyme activity to allow substrate hydrolysis to take place before they are stained with substrate-detecting reagents, and active enzymes are detected as clear bands. Multiple forms of a given activity which were resolved during electrophoresis in the nonbinding mode are reflected by the presence of individual bands. The substrate-containing gel electrophoresis technique does not appear to be amenable to precise quantification of enzymes. By comparing the length of the clear tracks or the degree of staining of the activity bands for a range of enzyme concentrations, however, it is possible to establish the smallest amount of enzyme that can unequivocally be detected under a given set of conditions; from such studies we estimate that the sensitivity of detection with the substrate-containing gel electrophoresis technique can be orders of magnitude better than that obtained with other methods. The levels of detection observed in the work presented here were about 50 pg for α-amylase run on starch-containing gels, 1 pg to 1 ng for nucleases run on DNA- or RNA-containing gels, and 100 pg to 10 ng for 11 different pure and crude protease preparations run on gels containing heat-denatured bovine serum albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号