首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
The role of leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18) in T cell-endothelial cell (EC) interactions was assessed by utilizing CD11a/CD18-deficient T cell clones generated from a patient with leukocyte adhesion deficiency (LAD). The ability of these clones to bind to and migrate through monolayers of EC in vitro was compared with that of clones generated in a similar manner from normal controls. The LAD clones bound to EC to a similar extent as the controls. The contribution of other cell surface adhesion molecules was assessed with mAb blocking experiments. It was found that part of the EC binding by these CD11a/CD18-deficient clones was mediated by an interaction of very late Ag-4 (VLA-4) with vascular cell adhesion molecule-1 (VCAM-1) on the EC. In contrast to their normal ability to bind to EC, the capacity of the LAD clones to migrate through EC monolayers was significantly less than that of the control clones. This impairment in migration was not related to decreased intrinsic motility. Moreover, neither phorbol ester stimulation of the LAD clones nor IL-1 stimulation of the EC increased the capacity of the clones to migrate through EC monolayers, although binding to EC was augmented by both treatments. Only a minimal percentage of the migration of either control or LAD clones was inhibited by mAb to VLA-4 or VCAM-1. These data demonstrate that LFA-1 plays a central role in the transendothelial migration of T cells. In the absence of LFA-1, T cells retain the ability to bind to EC because of the activity of other receptor/ligand pairs, including VLA-4/VCAM-1. Finally, it is likely that, during both binding and transendothelial migration of T cells, additional cell surface molecules play a role.  相似文献   

2.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

3.
CD44, a widely expressed cell surface glycoprotein, plays a major role in cell-cell adhesion, cell-substrate interaction, lymphocyte homing, and tumor metastasis. For tumor metastasis to occur through the blood vessel and lymphatic vessel pathway, the tumor cells must first adhere to endothelial cells. Recent studies have shown that high expression of CD44 in certain types of tumors is associated with the hematogenic spread of cancer cells. However, the functional relevance of CD44 to tumor cell metastasis remains unknown. In this study, we investigated the mechanisms of CD44 cross-linking-induced adhesion and transendothelial migration of tumor cells using MDA-MB-435S breast cancer cell line. Breast cancer cells were found to express high levels of CD44. Using flow cytometric analysis and immunofluorescence staining, we demonstrated that cross-linking of CD44 resulted in a marked induction of the expression of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) by exocytosis. These results were also observed with the Hs578T breast cancer cell line. Furthermore, LFA-1- and VLA-4-mediated adhesion and transendothelial cancer cell migration were also studied. Anti-LFA-1 mAb or anti-VLA-4 mAb alone had no effect on adhesion or transendothelial cancer cell migration, but were able to inhibit both of these functions when added together. This shows that CD44 cross-linking induces LFA-1 and VLA-4 expression in MDA-MB-435S cells and increases integrin-mediated adhesion to endothelial cells, resulting in the transendothelial migration of breast cancer cells. These observations provide direct evidence of a new function for CD44 that is involved in the induction of LFA-1 and VLA-4 expression by exocytosis in MDA-MB-435S cells. Because these induced integrins promote tumor cell migration into the target tissue, it may be possible to suppress this by pharmacological means, and thus potentially cause a reduction in invasive capability and metastasis.  相似文献   

4.
Transmembrane signals generated following mAb binding to CD19, CD20, CD39, CD40, CD43, Leu-13 Ag, and HLA-D region gene products induced rapid and strong homotypic adhesion in a panel of human B cell lines. Lower levels of adhesion were also observed after engagement of CD21, CD22, and CD23. Adhesion induced by mAb binding to these Ag was identical with respect to the kinetics of adhesion and the morphology of the resulting cellular aggregates, and was distinct from PMA-induced adhesion in both of these properties. Adhesion was not observed in response to mAb binding to MHC class I, CD24, CD38, CD44, CD45RA, or CD72. In contrast to B cell lines, homotypic adhesion was not induced in two pre-B cell lines, in spite of their high level expression of CD19 and HLA-D. Adhesion induced by suboptimal stimulation through these surface Ag or by PMA was mediated primarily through LFA-1 and ICAM-1. However, optimal stimulation through CD19, CD20, CD39, CD40, and HLA-D induced strong homotypic adhesion that was not blocked by anti-LFA-1 mAb. This alternate pathway of adhesion was also observed in LFA-1-deficient cell lines and in the presence of EDTA, suggesting that adhesion was not mediated by integrins. Adhesion in response to engagement of cell-surface Ag was unaffected by H7 or genestein, but was significantly inhibited by staurosporine, and was completely ablated by sphingosine and herbimycin. These studies indicate that engagement of multiple B cell-surface molecules initiates a signal transduction cascade that involves tyrosine kinases but not protein kinase C, and which leads to homotypic adhesion. Furthermore, adhesion was mediated by at least two distinct cell-surface adhesion receptors: LFA-1/ICAM-1 and a heretofore unknown adhesion receptor.  相似文献   

5.
The VLA-4 (CD49d/CD29) integrin is the only member of the VLA family expressed by resting lymphoid cells that has been involved in cell-cell adhesive interactions. We here describe the triggering of homotypic cell aggregation of peripheral blood T lymphocytes and myelomonocytic cells by mAbs specific for certain epitopes of the human VLA alpha 4 subunit. This anti-VLA-4-induced cell adhesion is isotype and Fc independent. Similar to phorbol ester-induced homotypic adhesion, cell aggregation triggered through VLA-4 requires the presence of divalent cations, integrity of cytoskeleton and active metabolism. However, both adhesion phenomena differed at their kinetics and temperature requirements. Moreover, cell adhesion triggered through VLA-4 cannot be inhibited by cell preincubation with anti-LFA-1 alpha (CD11a), LFA-1 beta (CD18), or ICAM-1 (CD54) mAb as opposed to that mediated by phorbol esters, indicating that it is a LFA-1/ICAM-1 independent process. Antibodies specific for CD2 or LFA-3 (CD58) did not affect the VLA-4-mediated cell adhesion. The ability to inhibit this aggregation by other anti-VLA-4-specific antibodies recognizing epitopes on either the VLA alpha 4 (CD49d) or beta (CD29) chains suggests that VLA-4 is directly involved in the adhesion process. Furthermore, the simultaneous binding of a pair of aggregation-inducing mAbs specific for distinct antigenic sites on the alpha 4 chain resulted in the abrogation of cell aggregation. These results indicate that VLA-4-mediated aggregation may constitute a novel leukocyte adhesion pathway.  相似文献   

6.
7.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

8.
The comparative roles of the endothelial cell (EC) adhesion receptors VCAM-1 and ICAM-1 during the adhesion and transendothelial migration of T cells were examined. The adhesion of T cells to IL-1-activated EC was markedly, but not completely, inhibited by mAb to VCAM-1 as well as to its counter-receptor, VLA-4, whereas, T cell binding to IL-1-activated EC was not blocked by mAb to ICAM-1 or to its counter-receptor, LFA-1. In contrast, LFA-1/ICAM-1, but not VLA-4/VCAM-1, mediated much, but not all, of the binding of T cells to unstimulated EC. Activation of T cells with phorbol dibutyrate and ionomycin alter the receptor-counter-receptor pairs used for binding to EC. Regardless of the activation status of the EC, the binding of activated T cells was not blocked by mAb to VLA-4 or VCAM-1. Moreover, the binding of activated T cells to EC was blocked to a lesser degree by mAb to LFA-1 than that of resting T cells, and mAb to ICAM-1 blocked binding only modestly. The role of VCAM-1 and ICAM-1 during the transendothelial migration of T cells was also examined. Regardless of the activation status of the T cells or the EC, VCAM-1 was never found to function during transendothelial migration, even when it mediated the binding of resting T cells to IL-1-activated EC. In contrast, ICAM-1 played an important role in transendothelial migration under all of the conditions examined, including situations when T cell-EC binding was not mediated by ICAM-1. Immunoelectron microscopic analysis of transendothelial migration supported the conclusion that ICAM-1 but not VCAM-1 played a central role in this process. Thus, ICAM-1 was prominently and uniformly expressed at all EC membrane sites that were in contact with bound and migrating T cells, whereas VCAM-1 was localized to the luminal surface of IL-1-activated EC, but was often absent from the surface of the EC in contact with T cells undergoing transendothelial migration. These studies confirm that ICAM-1 and VCAM-1 play reciprocal roles in the binding of resting T cells to resting and IL-1-activated EC, respectively, but a less prominent role in the binding of activated T cells. Moreover, ICAM-1 but not VCAM-1 plays a role in transendothelial migration, regardless of the receptor-counter-receptor pairs used for initial binding.  相似文献   

9.
Complete T cell activation requires not only a first signal via TCR/CD3 engagement but also a costimulatory signal through accessory receptors such as CD2, CD28, or integrins. Focal adhesion kinase, pp125(FAK) (FAK), was previously shown to be localized in focal adhesions in fibroblasts and to be involved in integrin-mediated cellular activation. Although signaling through beta1- or beta3-integrins induces tyrosine phosphorylation of FAK, there has been no evidence that activation of T cells through the beta2-integrin, LFA-1, involves FAK. We report here that crosslinking of LFA-1 induces tyrosine phosphorylation of FAK in PHA-activated T cells. Moreover, cocrosslinking with anti-LFA-1 mAb and suboptimal concentration of anti-CD3 mAb markedly increases tyrosine phosphorylation of FAK in an antibody-concentration-dependent and time-kinetics-dependent manner compared with stimulation through CD3 alone, which correlates well with enhanced proliferation of PHA-activated T cells. Furthermore, LFA-1beta costimulation with CD3 induces tyrosine phosphorylation of Syk associated with FAK. These results indicate, for the first time, that signals mediated by LFA-1 can regulate FAK, suggesting that LFA-1-mediated T cell costimulation may be involved in T cell activation at least partially through FAK.  相似文献   

10.
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.  相似文献   

11.
Yoon WK  Kim HJ  Son HY  Jeong KS  Park SJ  Kim TH  An MY  Kim SH  Kim SR  Ryu SY 《Regulatory peptides》2005,124(1-3):151-156
Leukocyte function-associated antigen-1 (LFA-1) is one of the integrins that are expressed on the leukocytes, and has been shown to play an important role in leukocyte trafficking. The adhesive activity of LFA-1 is governed partially by the Rap1. This study examined that the relationship between LFA-1 and Rap1 mRNA expressions by anti-CD3 and anti-CD3+SOM treatment in the CD4+ and CD8+ T cells. The LFA-1 mRNA expression levels following the anti-CD3 and anti-CD3+SOM treatment for 30 min was greater on the CD8+ T cells, and the LFA-1 expression of the CD8+ T cells with anti-CD+SOM treatment was affected more severely than that of the CD4+ T cells. The Rap1 mRNA expression patterns following anti-CD3 and anti-CD3+SOM stimulation in the CD4+ and CD8+ T cells were similar to the LFA-1 expression patterns, and the expression level following anti-CD3+SOM treatment was suppressed more significantly in the CD8+ T cells. These results suggest that the difference in the Rap1 expression level after stimulation might explain the differences in the LFA-1 expression level on the T cell subsets, and that the down-regulation of Rap1 expression following SOM treatment is closely related to the diminished LFA-1 expression.  相似文献   

12.
Adhesion of lymphocytes to vascular endothelium is the first event in the passage of lymphocytes into a chronic inflammatory reaction. To investigate molecular mechanisms of T-EC adhesion, monoclonal antibodies (Mab) against T cell surface antigens have been tested for inhibition of binding. Baseline and phorbol ester-stimulated adhesion were strongly inhibited by either Mab 60.3 (reactive with the beta-chain of the LFA-1, OKM1, and p150,95 molecules) or by Mab TS 1/22 (specific for the alpha-chain of LFA-1). Although the increased binding of phorbol ester-stimulated lymphocytes was inhibited by anti-LFA-1 antibody, there was no increased expression of LFA-1 on phorbol ester-stimulated T cells, as determined by FACS analysis. Maximal inhibition of unstimulated and phorbol ester-stimulated T-EC adhesion was seen at Mab concentrations of 1 microgram/ml. In contrast, LPS- and IL 1-enhanced T-EC adhesion were only weakly inhibited by these antibodies. Mab 60.3 and TS 1/22 did not stain either unstimulated EC or LPS- or IL 1-stimulated EC, as measured by FACS analysis; moreover, preincubation of EC alone with these antibodies did not lead to inhibition of T-EC binding. Adhesion was not affected by Mab against the sheep erythrocyte receptor (LFA-2), a nonpolymorphic HLA class 1 framework antigen, or against LFA-3, the alpha-chain of OKM1, or the alpha-chain of p150,95. These results suggest that the mechanism of binding of lymphocytes to unstimulated endothelium differs from that to stimulated endothelium. LFA-1 appears to be an important adhesion-related molecule for binding to unstimulated endothelium. However, the increased lymphocyte adhesion to IL 1- or LPS-stimulated EC observed in these experiments appears to be relatively independent of LFA-1. The increased adhesion to stimulated EC could be due either to an increase in the avidity or the density of the EC receptor molecules ordinarily involved in unstimulated T-EC binding or to the formation of alternative receptors on the stimulated EC that are not present on unstimulated cells.  相似文献   

13.
CD40 signaling activates CD11a/CD18 (LFA-1)-mediated adhesion in B cells.   总被引:4,自引:0,他引:4  
Cell-cell adhesion events play critical roles in the sequential migrations and multiple specific cell-cell interactions which B cells undergo during normal development and function. We have observed that mAb to several B cell-associated molecules, including mAb to CD19, CD37, and CD40, induce homotypic aggregation of freshly isolated human B cells. The aggregation of B cells induced by CD40 mAb was due to activation of a cell-cell adhesion system, and not due to agglutination by mAb, because 1) in addition to being energy dependent and cation dependent, the aggregation was blocked by inhibitors of messenger RNA and protein synthesis; and 2) a mouse B cell line transformed with intact human CD40 aggregated in response to CD40 mAb, whereas a line expressing surface CD40, but lacking the cytoplasmic tail and previously shown incapable of transmitting a signal from the cell surface, did not aggregate. The aggregation, although of slow onset, was persistent and of high avidity. In addition, CD40 mAb induced increased surface expression of intercellular adhesion molecule-1 (CD54), a ligand for CD11a/CD18 (LFA-1), and CD18 mAb blocked aggregation. CD40 mAb also augmented the ability of dense B cells to stimulate the proliferation of allogeneic T cells via a CD18-dependent process. We conclude that signaling through CD40, elicited by cross-linking the CD40 protein on the cell surface, activates the CD18/intercellular adhesion molecule adhesion system; in addition, CD40 cross-linking may activate a second adhesion system since CD40 mAb induced aggregation of the B cell line Ramos, which does not express surface CD18. B cell adhesion may be triggered by signaling through multiple surface proteins, thereby lending specificity of activation to adhesion systems which are broadly expressed.  相似文献   

14.
The integrin lymphocyte function-associated antigen-1 (LFA-1) expressed on T cells serves as a useful model for analysis of leukocyte integrin functional activity. We have assessed the role of divalent cations Mg2+, Ca2+, and Mn2+ in LFA-1 binding to ligand intercellular adhesion molecule-1 (ICAM-1) and induction of the divalent cation-dependent epitope recognized by mAb 24. Manganese strongly promoted both expression of the 24 epitope and T cell binding to ICAM-1 via LFA-1, suggesting that Mn2+ is able to directly alter the conformation of LFA-1 in a manner that favors ligand binding. Since Mn2+ also promotes functional activity of other integrins, parallels in mechanism of ligand binding may span the integrin family. In contrast, induction of 24 epitope expression by Mg2+ required removal of Ca2+ from T cell LFA-1 with EGTA. Furthermore, binding of mAb 24 to T cell LFA-1 in the presence of either Mn2+ or Mg2+ was found to be specifically inhibited by Ca2+, suggestive of a negative regulatory role for Ca2+ in the control of leukocyte integrin function. Analysis of T cell binding to ICAM-1 via LFA-1 in the presence of Mg2+ or Mn2+, confirmed that Ca2+ exerted inhibitory effects upon LFA-1 function. The implication of our findings is that Ca2+ bound with relatively high affinity to LFA-1 may serve to maintain an inactive state. Thus induction of function and 24 epitope expression may occur as a result of displacement of Ca2+ from leukocyte integrins or alternatively, such activators may be able to impose the required conformational change in the presence of bound Ca2+.  相似文献   

15.
16.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

17.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in the suppression of human B cell function by immobilized anti-CD3-activated CD4+ T cells was examined by studying the effects of mAb to these determinants. The suppressive activity was assessed by the effects of CD4+ T cells without mitomycin C treatment activated by immobilized anti-CD3 for 72 hr on the differentiation into Ig-secreting cells of B cells activated for 72 hr with immobilized anti-CD3-stimulated CD4+ T cells that had been treated with mitomycin C (T4 mito). Suppression was not observed when activated CD4+ T cells and B cells were separated by filter membranes, indicating that the suppression requires the direct interactions between anti-CD3-activated CD4+ T cells and activated B cells. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) reversed the suppression of B cell function by suppressor CD4+ T cells significantly. Reversal of suppression of B cell function was most marked when activated B cells were treated with mAb to ICAM-1 and suppressor CD4+ T cells were treated with mAb to LFA-1, but not vice versa. Studies using fluorescence-activated cell sorter revealed marked increase of expression of ICAM-1 on B cells after 72 hr of activation with immobilized anti-CD3-stimulated T4 mito. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the suppressive activity of anti-CD3-activated CD4+ T cells to B cells. Moreover, the data are consistent with a model of T-cell-mediated B cell suppression in which interactions between LFA-1 on suppressor T cells and ICAM-1 on activated B cells play a central role in the suppression of B cell function.  相似文献   

18.
Given prior evidence that adhesion molecules play critical roles in T cell recognition, it is important to identify new adhesion pathways and explore their role in T cell activation. Our studies of T cell proliferation complement concurrent studies of T cell adhesion; both demonstrate that resting CD4+ human T lymphocytes express the VLA integrins VLA-4, VLA-5, and VLA-6, and can use these receptors to interact with the extracellular matrix (ECM) proteins fibronectin (VLA-4 and VLA-5) and laminin (VLA-6). VLA-dependent interaction of resting human CD4+ T cells with fibronectin (FN) and laminin (LN) facilitates CD3-mediated T cell proliferation. Specifically, T cells do not proliferate in response to a wide range of concentrations of a CD3 mAb, OKT3, immobilized on plastic. However, coimmobilization with the CD3 mAb of FN or LN, but not other ECM proteins such as fibrinogen and collagen, consistently results in strong T cell proliferation. mAb blocking studies demonstrate that three VLA integrin receptor/ligand interactions mediate costimulation: VLA-4/FN, VLA-5/FN, and VLA-6/LN. VLA-5-dependent binding to FN but not costimulation by FN can be specifically blocked with peptides containing the RGD (arg-gly-asp) tripeptide sequence whereas VLA-4-dependent binding and costimulation can both be efficiently inhibited by a 12 amino acid peptide, LHGPEILDVPST (leu-his-gly-pro-glu-iso-leu-asp-val-pro-ser-thr), derived from the alternatively spliced IIICS region of FN. The costimulation provided by FN and LN in this system is stronger than and distinct from costimulatory signals provided by cytokines, such as IL-1 beta, IL-6,, and IL-7. These results suggest that, such as other adhesion molecules, T cell VLA integrins may also function in a dual capacity as adhesion and signalling molecules. In addition, they suggest that the interaction of T cells in vivo with ECM via VLA integrins plays a role not only in T cell migratory processes but may also influence Ag-specific T cell recognition.  相似文献   

19.
Our previous studies have demonstrated that cultured human endothelial cells (EC) provide costimulation to PHA-activated CD4+ T cells, measured as augmentation of IL-2 synthesis, through a cell contact-department pathway. Here we show that fixed and living EC provide comparable degrees of costimulation to CD4+ T cell populations, indicating that EC costimulation does not depend upon active metabolism. EC achieve these effects in part by utilizing lymphocyte function-associated antigen-3 (LFA-3) to interact with T cell CD2 as shown by observations that EC augmentation of IL-2 is partially (50-70%) blocked by eight of eight mAb tested which recognize LFA-3; that purified phosphatidylinositol-linked LFA-3 (PI-LFA-3) can also provide costimulation to CD4+ T cells; and that there is a delay of the EC effect on CD4+ T cells which express low levels of CD2 compared to those which express high levels of CD2. However, three lines of evidence suggest that EC also utilize at least one additional ligand. First, there is incomplete replacement of the EC effect by PI-LFA-3 such that the costimulatory ability of EC combined with PI-LFA-3 is additive at all concentrations of PI-LFA-3 tested. Second, costimulation by PI-LFA-3, but not by EC, is fully inhibited by anti-CD2 or anti-LFA-3 mAb. Finally, costimulation by PI-LFA-3, but not by EC, is completely suppressed by cyclosporine A. We have not formally identified the second ligand but it does not appear to be intercellular adhesion molecule-1, vascular cell adhesion molecule-1, CD44, or B7/BB1.  相似文献   

20.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号