首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid–liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors—chiefly, acetic acid—from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno‐economic analyses focused on second‐generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL‐developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971–977, 2016  相似文献   

2.
Summary Enzymatic hydrolysates of hemicellulose from steam-pretreated aspenwood were more fermentable than the acid hydrolysate after rotoevaporation or ethyl acetate extraction treatments to remove acetic acid and sugar- and lignin-degradation products prior to fermentation by Pichia stipitis CBS 5776. Total xylose and xylobiose utilization from 5.0% (w/v) ethyl acetate extracted enzymatic hydrolysate was observed with an ethanol yield of 0.47 g ethanol/g total available substrate and an ethanol production rate of 0.20 g·l-1 per hour in 72 h batch fermentation.  相似文献   

3.
Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.  相似文献   

4.
This paper describes a gas recirculation system for the exhaust gases from the aerobic fermenters normally used in acetic fermentation processes. With the application of this procedure, it is possible to operate in a closed system, so preventing the large losses of fermentation yield due to evaporation which occur in open systems. In addition, this system reduces losses of volatile organoleptic compounds (ethanol, acetic acid and ethyl acetate, among others) so enabling the product to be incorporated into processes for the manufacture of high quality vinegars.  相似文献   

5.
Ethanolic fermentation of simple sugars is an important step in the production of bioethanol as a renewable fuel. Significant levels of organic acids, which are generally considered inhibitory to microbial metabolism, could be accumulated during ethanolic fermentation, either as a fermentation product or as a by-product generated from pre-treatment steps. To study the impact of elevated concentrations of organic acids on ethanol production, varying levels of exogenous acetate or lactate were added into cultures of Thermoanaerobacter ethanolicus strain 39E with glucose, xylose or cellobiose as the sole fermentation substrate. Our results found that lactate was in general inhibitory to ethanolic fermentation by strain 39E. However, the addition of acetate showed an unexpected stimulatory effect on ethanolic fermentation of sugars by strain 39E, enhancing ethanol production by up to 394%. Similar stimulatory effects of acetate were also evident in two other ethanologens tested, T. ethanolicus X514, and Clostridium thermocellum ATCC 27405, suggesting the potentially broad occurrence of acetate stimulation of ethanolic fermentation. Analysis of fermentation end product profiles further indicated that the uptake of exogenous acetate as a carbon source might contribute to the improved ethanol yield when 0.1% (w/v) yeast extract was added as a nutrient supplement. In contrast, when yeast extract was omitted, increases in sugar utilization appeared to be the likely cause of higher ethanol yields, suggesting that the characteristics of acetate stimulation were growth condition-dependent. Further understanding of the physiological and metabolic basis of the acetate stimulation effect is warranted for its potential application in improving bioethanol fermentation processes.  相似文献   

6.
Gas phase ethyl acetate production was studied using a porcine pancreatic lipase powder. It was observed that gaseous ethyl acetate was produced from gaseous ethanol and acetic acid. Accordingly, the effects of amount of lipase powder, gaseous ethanol and acetic acid concentrations, and reaction temperature on the performance of a batch bioreactor were investigated. Apparent Michaelis-Menten constant of ethanol was 0.163 [μM] and there was no inhibition by ethanol over the range investigated. As acetic acid concentration increased, ethyl acetate production increased to a maximum, then decreased, thus suggesting the inhibition effects by acetic acid. Over the reaction temperature of 25–55?°C, activation energy was calculated as 3.93 kcal/gmol and initial reaction rate was obtained as follows: r?=?75.7 exp(?1975.7/T) [μM/mg of lipase/hr]  相似文献   

7.
Cell recycle and vacuum fermentation systems were developed for continuous ethanol production. Cell recycle was employed in both atmospheric pressure and vacuum fermentations to achieve high cell densities and rapid ethanol fermentation rates. Studies were conducted with Saccharomyces cerevisiae (ATCC No. 4126) at a fermentation temperature of 35°C. Employing a 10% glucose feed, a cell density of 50 g dry wt/liter was obtained in atmospheric-cell recycle fermentations which produced a fermentor ethanol productivity of 29.0 g/liter-hr. The vacuum fermentor eliminated ethanol inhibition by boiling away ethanol from the fermenting beer as it was formed. This permitted the rapid and complete fermentation of concentrated sugar solutions. At a total pressure of 50 mmHg and using a 33.4% glucose feed, ethanol productivities of 82 and 40 g/liter-hr were achieved with the vacuum system with and without cell recycle, respectively. Fermentor ethanol productivities were thus increased as much as twelvefold over conventional continuous fermentations. In order to maintain a viable yeast culture in the vacuum fermentor, a bleed of fermented broth had to be continuously withdrawn to remove nonvolatile compounds. It was also necessary to sparge the vacuum fermentor with pure oxygen to satisfy the trace oxygen requirement of the fermenting yeast.  相似文献   

8.
发酵抑制物对絮凝酵母戊糖发酵的影响   总被引:1,自引:0,他引:1  
将絮凝剂加入酵母溶液中,使酵母絮凝成颗粒以此作为固定化酵母进行戊糖发酵。研究了常见发酵抑制物(甲酸、乙酸、糠醛和乳酸等)对絮凝酵母发酵木糖的影响。结果表明:在60.0g/L木糖发酵液中,经过24h发酵,木糖利用率达94.6%,当分别添加抑制物甲酸、乙酸、糠醛、乙醇和乳酸时,聚氧乙烯絮凝酵母分别对其的耐受浓度为0.5、0.5、1.0、30.0和8.0g/L。当抑制物添加量超过各自的耐受浓度后,对絮凝酵母发酵会产生明显的抑制作用。  相似文献   

9.
丙酸是以玉米为原料自絮凝酵母乙醇连续发酵系统废糟液全循环过程中积累的主要抑制物。基于丙酸对酵母细胞抑制机理,开发了3种废糟液全循环条件下乙醇连续发酵工艺策略。首先根据高温导致丙酸生成的现象,去除了物料灭菌环节,使发酵液丙酸浓度显著降低,生物量和乙醇浓度分别提高了59.3%和7.4%。其次,以丙酸浓度达到半数抑制浓度(IC50)40 mmol/L为目标,通过拟合丙酸积累数据预测废糟液全循环的最长运行时间,发酵装置运行应控制在此时间范围内。再次,较低的环境pH值提高了丙酸毒性,而实验证明发酵液pH为5.5时,丙酸对细胞生长的抑制影响最小,因此控制发酵过程中的pH有利于弱化丙酸毒性。  相似文献   

10.
A novel process of production of succinic acid (SA) has been developed, which includes the synthesis of alpha‐ketoglutaric acid by a thiamine‐auxotrophic yeast strain Yarrowia lipolytica VKM Y‐2412 from n‐alkanes and subsequent oxidation of the acid by hydrogen peroxide to SA. The concentration of SA in the culture broth and its yield were found to be 38.8 g/L and 82.45% of n‐alkane consumed, respectively. The isolation procedure involved the extraction of the residual alkanes with the mixture of ethyl acetate and hexane, the decomposition of H2O2 in the filtrate followed by filtrate bleaching and acidification with a mineral acid; the evaporation of filtrate and the ethanol extraction of SA from lyophilized residue. The purity of the SA isolated from the culture liquid filtrate reached 99.5%.  相似文献   

11.
Oxidizing and assimilating ability of the yeastCandida utilis 49 was tested with 21 different low-boiling organic compounds which come as components of raw synthetic ethanol. The highest yields of yeast dry weight were obtained with ethanol (72.0%), propanol (48.2%), ethyl acetate (43.4%) and acetic acid (34.2%). To a minor extent, the yeast was capable of utilizing also 2-propanol, butanol and 2-butanol; it oxidized most of the compounds tested.  相似文献   

12.
Zanthoxylum bungeanum extracts were prepared using seven solvents: water, methanol, ethanol, acetic acid, ethyl acetate, chloroform, and benzene. The volatile composition in the extracts was qualitatively analyzed using headspace solid‐phase microextraction coupled with gas chromatography mass spectrometry detection, and the alkylamide composition was determined using high‐performance liquid chromatography. The extract compositions differed with respect to the solvents. A total of 49 volatile components belonging to four groups, terpenoids, alcohols, esters, and ketones, were identified in the extracts. The Z. bungeanum extracts were either ester or terpenoid type, dominated by linalyl acetate. The extracts were divided into three distinct groups based on principal component analysis and hierarchical clustering analysis. Water, methanol, and ethanol extracts could be applied in the food and pharmaceutical industries.  相似文献   

13.
The influence of species of Acetobacter and Gluconobacter upon growth of the wine yeasts Saccharomyces cerevisiae, Kloeckera apiculata and Candida stellata was examined during mixed culture in grape juice. Acetobacter pasteurianus, A. aceti and Gluconobacter oxydans grew in conjunction with yeasts during juice fermentation. As determined by viable counts, yeast growth was only slightly impaired by the presence of bacteria. However, as judged by the concentrations of glucose, fructose, ethanol, glycerol, acetaldehyde, ethyl acetate, iso -amyl alcohol and organic acids in the fermented juice, acetic acid bacteria significantly influenced the alcoholic fermentation by yeasts.  相似文献   

14.
In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation ofglucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity tothe alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as thatreported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolicprocesses in Z. bailii , with the kinetics of inhibition again being exponential. However,inhibition of fermentation was much less pronounced than in S. cerevisiae. The valuesestimated with Z. bailii for the minimum inhibitory concentration of acetic acid rangedfrom 100 to 240 mmol l−1 total acetic acid compared with values of near zeroreported for S. cerevisiae. The inhibitory effects of acetic acid on Z. bailii were notsignificantly potentiated by ethanol.  相似文献   

15.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

16.
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling.  相似文献   

17.
A supported liquid membrane system was developed for the extraction of ethanol during semicontinuous fermentation of Saccharomyces bayanus. it consisted of a porous Teflon sheet as support, soaked with isotridecanol. This assembly permitted combining biocompatibility, permeation efficiency, and stability. The removal of ethanol from the cultures led to decreased inhibition and, thus, to a gain in conversion of 452 g/L glucose versus 293 g/L glucose without extraction. At the same time, the ethanol volumetric productivity was enhanced 2.5 times, due to an improvement of yeast viability, while the substrate conversion yield was maintained above 95% of its theoretical value. Besides these improvements in fermentation performances, the process resulted in ethanol purification, since the separation was selective towards microbial cells and carbon substrate, and likely selective to mineral ions present in the fermentation broth. For pervaporation, a concentration of ethanol four times greater was obtained in the collected permeate.  相似文献   

18.
Several yeast cultures belonging to five non-Saccharomyces species associated with wine-making were evaluated for their oenological properties. Results showed that Candida stellata and Torulaspora delbrueckii could positively affect the taste and flavour of alcoholic beverages. Apiculate yeasts exhibited large amounts of negative byproducts, particularly ethyl acetate. Nevertheless, Kloeckera apiculata showed a significantly negative correlation between either acetic acid and ethyl acetate formation and ethanol production. Selected non-Saccharomyces yeast cultures could be applied profitably in wine-making for optimization of wine bouquet using new fermentation technologies.  相似文献   

19.
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling.  相似文献   

20.
The ethanolic fermentation of liquid fractions (hydrolysates) issued from dilute acid pre-treatment of olive tree biomass by Pichia stipitis is reported for the first time. On the one side, P. stipitis has been reported as the most promising naturally occurring C5 fermenting microorganism; on the other side, olive tree biomass is a renewable, low cost, and lacking of alternatives agricultural residue especially abundant in Mediterranean countries. The study was performed in two steps. First, the fermentation performance of P. stipitis was evaluated on a fermentation medium also containing the main inhibitors found in these hydrolysates (acetic acid, formic acid, and furfural), as well as glucose and xylose as carbon sources. The effect of inhibitors, individually or in a mixture, on kinetic and yield parameters was calculated. In a second step, hydrolysates obtained from 1% (w/w) sulfuric acid pre-treatment of olive tree biomass at 190°C for 10 min were used as a real fermentation medium with the same microorganism. Due to inhibition, effective fermentation required dilution of the hydrolysate and either overliming or activated charcoal treatment. Results show that ethanol yields obtained from hydrolysates, ranging from 0.35 to 0.42 g/g, are similar to those from synthetic medium, although the process proceeds at lower rates. Inhibiting compounds affect the fermentation performance in a synergistic way. Furfural is rapidly assimilated by the yeast; acetic acid and formic acid concentrations decrease slowly during the process. Activated charcoal or overliming detoxification improve the fermentability of diluted hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号