首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The adjuvant activity of chicken interleukin‐12 (chIL‐12) protein has been described as similar to that of mammalian IL‐12. Recombinant chIL‐12 can be produced using several methods, but chIL‐12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL‐12 which stably expressed a fusion protein, chIL‐12 and enhanced green fluorescent protein (eGFP) connected by a (G4S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 106 DF1/chIL‐12 cells were inoculated in a T‐175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL?1 and 2,207 ± 3.28 ng mL?1, respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN‐γ, which was measured using an enzyme‐linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL‐12 cells with DMSO or producing chIL‐12 in a fusion protein form does not have adverse effects on the bioactivity of chIL‐12. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:641–649, 2015  相似文献   

2.
To obtain different cell populations at specific cell cycle stages, we used a cell culture synchronization protocol. Effects of five different cell cycle inhibitors acting throughout the cell cycle were examined by DNA flow cytometric analysis of a synchrony/release lymphoma cell line (CEM). The screening synchronized protocol showed that staurosporine, mimosine and aphidicolin are reversible G1 phase inhibitors that act at different times. Staurosporine acted in early G1, exhibited the strongest cytotoxic effect, and induced apoptosis. Mimosine and aphidicolin acted in late G1 and at the G1/S boundary, respectively. Hydroxyurea arrested CEM cells in early S phase, but later than the aphidicolin arrest point. Nocodazole synchronized CEM cells in M phase. All the inhibitors examined in this study can be used to synchronize cells at different phases of the cell cycle and were reversible with little toxicity except for staurosporine which is highly toxic. Because the regulatory mechanism of the cell cycle is disrupted by their effects on protein synthesis, however, these drugs must be used with caution.  相似文献   

3.
4.
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.  相似文献   

5.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
ABSTRACT. Eukaryotic mitotic cell cycles have been extensively studied in yeasts and vertebrate cells but little is known about cell cycle mechanisms in early branches of the eukaryotic lineage. Trichomonas vaginalis represents one of the earliest branching eukaryotic lineages available for study. In contrast with most yeasts and vertebrate cells, the T. vaginalis G2 period was prolonged, comprising 50 to 58% of the cell population. Hydroxyurea, aphidicolin, and excess thymidine, all of which arrest yeasts and vertebrate cells at the G1/S phase boundary, had no effect on the T. vaginalis cell cycle, probably due to the known absence of synthetic pathways. The antimicrotubule mitotic inhibitors, colchicine and nocodazole, induced G2 phase synchrony. Metronidazole, a therapeutic reagent, also caused G2 phase arrest. These observations suggest that T. vaginalis is similar to yeasts and vertebrate cells in G2 and M phases, but the parasite's G1/S phase transition is distinctive. The results also suggest potentially therapeutic, anti-trichomonad activity of microtubule inhibitors such as nocodazole. The cultured parasite may prove useful as a model for the mitotic cell cycle in the absence of G1/S phase transitional activities universal in yeasts and vertebrate cells.  相似文献   

7.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in tumor cells over normal cells. To study the relationship between cell cycle progression and TRAIL-induced apoptosis, SW480 colon cancer and H460 lung cancer cell lines were examined for their sensitivity to TRAIL after arrest in different cell cycle phases. Cells were synchronized in G0/G1, S, and G2/M phase by serum starvation, aphidicolin, or nocodazole treatment, respectively. We found that arrest of cells in G0/G1 phase confers significantly higher susceptibility to TRAIL-induced apoptosis as compared to cells in late G1, S, or G2/M phase. To determine if cell cycle phase could be harnessed for therapeutic gain in the presence of TRAIL, we used the HMG-CoA reductase inhibitor, Simvastatin and lovastatin, to enrich a cancer cell population in G0/G1. Both simvastatin and lovastatin significantly augmented TRAIL-induced apoptosis in tumor cells, but not in normal keratinocytes. The results indicate that TRAIL, in combination with a HMG-CoA reductase inhibitor, may have therapeutic potential in the treatment of human cancer.  相似文献   

8.
The cell cycle stage of donor cells and the method of cell cycle synchronization are important factors influencing the success of somatic cell nuclear transfer. In this study, we examined the effects of serum starvation, culture to confluence, and treatment with chemical inhibitors (roscovitine, aphidicolin, and colchicine) on cell cycle characteristics of canine dermal fibroblast cells. The effect of the various methods of cell cycle synchronization was determined by flow cytometry. Short periods of serum starvation (24-72 h) increased (P<0.05) the proportion of cells at the G0/G1 phase (88.4-90.9%) as compared to the control group (73.6%). A similar increase in the percentage of G0/G1 (P<0.05) cells were obtained in the culture to confluency group (91.8%). Treatment with various concentrations of roscovitine did not increase the proportion of G0/G1 cells; conversely, at concentrations of 30 and 45 microM, it increased (P<0.05) the percentage of cells that underwent apoptosis. The use of aphidicolin led to increase percentages of cells at the S phase in a dose-dependent manner, without increasing apoptosis. Colchicine, at a concentration of 0.1 microg/mL, increased the proportion of cells at the G2/M phase (38.5%, P<0.05); conversely, it decreased the proportions of G0/G1 cells (51.4%, P<0.05). Concentrations of colchicines >0.1 microg/mL did not increase the percentage of G2/M phase cells. The effects of chemical inhibitors were fully reversible; their removal led to a rapid progression in the cell cycle. In conclusion, canine dermal fibroblasts were effectively synchronized at various stages of the cell cycle, which could have benefits for somatic cell nuclear transfer in this species.  相似文献   

9.
Cytotoxic T lymphocytes secrete a pore-forming cytolysin, perforin, that damages membranes of target cells. They also ligate Fas receptors on target cells and provoke apoptotic death. A20 (B lymphoma) and P815 (mastocytoma) cell lines were examined for their susceptibility to perforin-mediated lysis and to Fas-induced apoptosis after blockade of the cell cycle at the G1/S interface. Cells were arrested at the G1/S interface by inhibition of DNA synthesis with thymidine or aphidicolin. Subsequently, the treated cells were incubated either with CTL cytotoxic granules or the Fas-specific monoclonal antibody Jo-2. We show that arrest of the cell cycle at the G1/S interface markedly reduced the susceptibility of target cells to perforin-mediated lysis. In contrast, growth arrest with thymidine or aphidicolin increased susceptibility of A20 and P815 cells to Fas-mediated apoptosis. Susceptibility to lysis by intact CTLs was not affected significantly by blockade of target cells with aphidicolin or thymidine. When cells surviving exposure to perforin-containing granules were isolated on Ficoll density gradients and cell-cycle profiles were examined by flow cytometry, the ratio of G1 to G2cells increased among the survivors exposed to granules in contrast to controls incubated with buffer alone. The data suggest that cells in G1 phase of the cell cycle are less susceptible to the perforin pathway than cells in G2and S phases but are more susceptible to the Fas pathway. J. Cell. Biochem. 69:425–435, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Polyploid plants often have altered gene expression, biochemistry, and metabolism compared to their diploid predecessors. Therefore cultured diploid cells have distinct benefits over cultured polyploid cells for the study of gene regulation and metabolism of the parent plant. Here we report methods for establishing and maintaining a rapidly dividing diploid Arabidopsis thaliana cell suspension culture, and subsequent cell cycle synchronisation. Rapid growth of homogeneous cell populations was achieved after 3 months of initiation of cultures from leaf calluses. The cells were grown in the dark on an orbital shaker (110 rpm, 50 mm orbit) at 24 °C. Continued maintenance of the culture required the use of late-exponential stage cells for subculture at weekly intervals using careful subculturing techniques to achieve accurate biomass transfer. Cell cycle synchronisation was achieved following sucrose starvation, phosphate starvation, hydroxyurea treatment, aphidicolin treatment, and a combination of phosphate starvation and aphidicolin treatment. Inhibition of the cell cycle and accumulation of cells in specific phases was monitored by microscopy to determine the metaphase/anaphase index, and by flow cytometry. The cell cycle was partially and reversibly blocked by sucrose or phosphate starvation and by hydroxyurea (2.5 mM) treatment. A complete block at G1/S interphase was achieved after aphidicolin treatment or phosphate starvation combined with aphidicolin treatment. Release from the aphidicolin block achieved ca. 78% cell cycle synchronisation in the cell population. Endoreduplication was evident after release from the block in all treatments but after one cycle (24 h) the cells returned to the diploid state. This diploid culture is currently being used in our laboratory for the genetic analysis of cell death.  相似文献   

11.
Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of gamma-H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G(1), greater impairment in S, and a substantial defect in late S/G(2). Furthermore, the radiosensitivity of irs1SF cells is slight in G(1) but dramatically higher in late S/G(2), while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G(2), where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.  相似文献   

12.
Myogenic cells were isolated from adult rat skeletal muscles and cultured in vitro. Cell proliferation was analyzed between days 1 and 14. The cell cycle phases were determined by examining Feulgen-stained cultures with a cell image processor. The nuclei were automatically analyzed by calculating 18 parameters relating to the texture and densitometry of chromatin and the shape of each nucleus. Cell cycle phases were characterized (Moustafa and Brugal, 1984). The recognition methods made it possible to analyse the nuclei of the myogenic cell populations which were either involved in each phase of the mitotic cycle, or left out of the cycle after fusion into myotubes.After 3 hr of culture 10% of the cell population was involved in the cell cycle. In the presence of foetal calf serum, this percentage increased until day 3 after plating. At that time, the DNA content of 28.2% of the cell population was higher than 3C, whereas it is 2C in G1 or G0 nuclei; image analysis showed that 42% of these cells were in S or G2 phase. From day 4, the proliferation rate gradually slowed down until day 8. After day 8, when numerous myotubes differentiated, the percentage of S and G2 phase cells had diminished to between 3 and 8%. The percentage of nuclei in G0 increased when the first myotubes differentiated around day 5. Myotube nuclei were largely in G0. When horse serum was added to the culture medium on day 4 to enhance myotube differentiation, significant cell proliferation was observed before cell fusion.These methods of analysis give the first daily pattern of myogenic cell proliferation and fusion in a cell population isolated from adult muscles.  相似文献   

13.
14.
15.
16.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

17.
High‐mobility group box 1 (HMGB1) is a multifunctional protein with intranuclear and extracellular functions. Although HMGB1 is overexpressed in approximately 85% of gastric cancers, the role of HMGB1 in gastric cancer biology remains unclear. In this study, we investigate the effect of downregulation of HMGB1 on the biological behavior of gastric cancer cells. MGC‐803 gastric cancer cells were transduced with HMGB1‐specific RNAi lentiviral vectors. Real‐time polymerase chain reaction and Western blot analysis of HMGB1 mRNA and protein, respectively, validated the silencing effects. HMGB1‐specific silencing significantly decreased cell proliferation. The impact on proliferation was observed at the cell cycle level—the number of cells in the G0/G1 phase increased, whereas that in S and G2/M phases decreased. Cell cycle changes were accompanied by decreases in cyclin D1 expression. Furthermore, HMGB1 silencing sensitized cells to apoptosis that was induced by oxaliplatin and mediated by the caspase‐3 pathway. Finally, silencing of HMGB1 expression significantly reduced cellular metastatic ability and MMP‐9 expression in MGC‐803 cells. In summary, HMGB1 not only plays an essential role in the proliferation and invasion of MGC‐803 cells but also represents a potential target for the therapeutic intervention of gastric cancer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Treatment of mammalian cells with 1,25-dihydroxyvitamin D3 (1,25D3) produces a G1 to S (G1/S) phase cell cycle block. In addition, it has been noted that a smaller proportion of cells accumulates in the G2/M compartment in 1,25D3-treated cultures. Since cyclins have a major influence on the regulation of cell cycle progression, we determined the expression of cyclins A and B as markers of the G2 phase and of cyclin E as the marker of G1/S transition. No increase in the steady-state levels of cyclin A or cyclin B mRNA was detected in the total cell population or in the cyclin B1 protein in the G2/M cell cycle compartment. In contrast, immunodetectable cyclin E protein was increased in cell cultures as a whole and specifically in the G2/M compartment cells. Determination of BrdU incorporation into DNA by flow cytometry showed marked inhibition of DNA replication in cells with DNA content higher than 4C, and autoradiography of 3H-TdR-pulsed cells showed that polynucleated cells did not replicate DNA after 96 h of treatment with 1,25D3 or analogs. Taken together, these experiments show that at least a portion of the G2/M compartment in 1,25D3-arrested cultures of HL60 cells represents G1 cells at a higher ploidy level, which are blocked from entering the high ploidy S phase. © 1996 Wiley-Liss, Inc.  相似文献   

19.
During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.  相似文献   

20.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号