首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal-coloboma syndrome is a recently described autosomal dominant syndrome of abnormal optic nerve and renal development. Two families have been reported with renal-coloboma syndrome and mutations of the PAX2 gene. The PAX2 gene, which encodes a DNA-binding protein, is expressed in the developing ear, CNS, eye, and urogenital tract. Ocular and/or renal abnormalities have been consistently noted in the five reports of patients with renal-coloboma syndrome, to date, but PAX2 expression patterns suggest that auditory and CNS abnormalities may be additional features of renal-coloboma syndrome. To determine whether additional clinical features are associated with PAX2 mutations, we have used PCR-SSCP to identify PAX2 gene mutations in patients. We report here four patients with mutations in exon 2, one of whom has severe ocular and renal disease, microcephaly, and retardation, and another who has ocular and renal disease with high-frequency hearing loss. Unexpectedly, extreme variability in clinical presentation was observed between a mother, her son, and an unrelated patient, all of whom had the same PAX2 mutation as previously described in two siblings with renal-coloboma syndrome. These results suggest that a sequence of seven Gs in PAX2 exon 2 may be particularly prone to mutation.  相似文献   

2.
3.
We report three families with dominant unilateral renal adysplasia without vesico-ureteral reflux. No dysmorphia or anomalies were evident in the reproductive system. Ophthalmological examination excluded the presence of optic nerve coloboma or other ocular anomalies. No mutations were detected in the EMX(2) and in PAX(2) genes of affected members. Other homeobox genes could be responsible for this anomaly in these three families.  相似文献   

4.
Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive skeletal dysplasia accompanied by severe hearing loss. The phenotype overlaps that of the autosomal dominant disorders-Stickler and Marshall syndromes-but can be distinguished by disproportionately short limbs, severe hearing loss, and lack of ocular involvement. In one family with OSMED, a homozygous Gly-->Arg substitution has been described in COL11A2, which codes for the alpha2 chain of type XI collagen. We report seven further families with OSMED. All affected individuals had a remarkably similar phenotype: profound sensorineural hearing loss, skeletal dysplasia with limb shortening and large epiphyses, cleft palate, an extremely flat face, hypoplasia of the mandible, a short nose with anteverted nares, and a flat nasal bridge. We screened affected individuals for mutations in COL11A2 and found different mutations in each family. Individuals from four families, including three with consanguineous parents, were homozygous for mutations. Individuals from three other families, in whom parents were nonconsanguineous, were compound heterozygous. Of the 10 identified mutations, 9 are predicted to cause premature termination of translation, and 1 is predicted to cause an in-frame deletion. We conclude that the OSMED phenotype is highly homogenous and results from homozygosity or compound heterozygosity for COL11A2 mutations, most of which are predicted to cause complete absence of alpha2(XI) chains.  相似文献   

5.
Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is an autosomal-dominant bone dysplasia characterized by metaphyseal flaring of long bones, enlargement of the medial halves of the clavicles, maxillary hypoplasia, variable brachydactyly, and dystrophic teeth. We performed genome-wide SNP genotyping in five affected and four unaffected members of an extended family with MDMHB. Analysis for copy-number variations revealed that a 105 kb duplication within RUNX2 segregated with the MDMHB phenotype in a region with maximum linkage. Real-time PCR for copy-number variation in genomic DNA in eight samples, as well as sequence analysis of fibroblast cDNA from one subject with MDMHB confirmed that affected family members were heterozygous for the presence of an intragenic duplication encompassing exons 3 to 5 of RUNX2. These three exons code for the Q/A domain and the functionally essential DNA-binding runt domain of RUNX2. Transfection studies with murine Runx2 cDNA showed that cellular levels of mutated RUNX2 were markedly higher than those of wild-type RUNX2, suggesting that the RUNX2 duplication found in individuals with MDMHB leads to a gain of function. Until now, only loss-of-function mutations have been detected in RUNX2; the present report associates an apparent gain-of-function alteration of RUNX2 function with a distinct rare disease.  相似文献   

6.
Aniridia, an autosomal dominant ocular disorder characterized by iris hypoplasia, results from mutations in the PAX6 gene, which encodes paired box and homeobox motifs. In this report we describe five new mutations in the paired box region of the human PAX6 gene that are associated with aniridia. The paired box mutations that we detected were in both familial (three) and sporadic (two) cases. All five mutations predict truncated PAX6 proteins. Our study indicates that early premature translational termination mutations in the PAX6 gene result in haploinsufficiency and generate the aniridia phenotype.  相似文献   

7.
Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations. The expression pattern of OTX2 in human embryos is consistent with the eye phenotypes observed in the patients, which range from bilateral anophthalmia to retinal defects resembling Leber congenital amaurosis and pigmentary retinopathy. Magnetic resonance imaging scans revealed defects of the optic nerve, optic chiasm, and, in some cases, brain. In two families, the mutations appear to have occurred de novo in severely affected offspring, and, in two other families, the mutations have been inherited from a gonosomal mosaic parent. Data from these four families support a simple model in which OTX2 heterozygous loss-of-function mutations cause ocular malformations. Four additional families display complex inheritance patterns, suggesting that OTX2 mutations alone may not lead to consistent phenotypes. The high incidence of mosaicism and the reduced penetrance have implications for genetic counseling.  相似文献   

8.
Homozygosity for Waardenburg syndrome.   总被引:3,自引:0,他引:3       下载免费PDF全文
In a large kindred including many individuals affected with Waardenburg (WS) type 1 (WS1) syndrome, a child affected with a very severe form of WS type 3 was born. This child presented with dystopia canthorum, partial albinism, and very severe upper-limb defects. His parents were first cousins, both affected with a mild form of WS1. Molecular analysis of PAX3, the gene that was determined by linkage to cause the disorder in the family, demonstrated a novel missense mutation (S84F) in exon 2 of PAX3 within the paired box. While individuals affected with WS1 were heterozygous for the mutation, the child with WS3 was homozygous for S84F. The observation that the PAX3 homozygote in humans may allow life at least in early infancy and does not cause neural tube defects was unexpected, since, in all the mutations known in mice (splotch), homozygosity has led to severe neural tube defects and intrauterine or neonatal death.  相似文献   

9.
10.
We have used the polymerase chain reaction and single strand conformation polymorphism (SSCP) methods to analyse the COL10A1 gene, which encodes collagen type X, in DNA samples from patients with metaphyseal dysplasia type Schmid (SMCD) and other related forms of metaphyseal dysplasia. Five cases of SMCD were sporadic and three others were familial. Abnormal SSCP profiles were observed in six instances. In two families, the altered pattern segregated with the phenotype. The heterozygous mutations corresponded to a glycine substitution by glutamic acid at position 595 and to an asparagine substitution by lysine at position 617. In one sporadic case, the sequence studies demonstrated that the individual was heterozygous for a single base deletion (del T 1908) that produced a premature stop codon. Three additional mutations were single base substitutions that affected highly conserved residues at positions 597, 644 and 648. In two additional individuals with SMCD, in two patients with unclassifiable forms of metaphyseal dysplasia, and in one family with epiphyso-metaphyseal dysplasia, SSCP analysis detected neutral polymorphisms in the entire coding sequence of the gene but no mutations. Our results demonstrate that mutations in the carboxy-terminal region of collagen X are specific for the SMCD phenotype. Mutations appear to be clustered into three small subdomains: one of them is rich an aromatic residues, the second includes the putative N-linked oligosaccharide attachment site and the third contains mostly hydrophilic residues. The absence of clinical variability between patients carrying heterozygous single base substitutions or small deletions suggests that, in both instances, the mutant collagen chains either fail to be incorporated into stable trimers or disturb type X collagen assembly.  相似文献   

11.
Aniridia is a rare, bilateral, congenital ocular disorder causing incomplete formation of the iris, usually characterized by iris aplasia/hypoplasia. It can also appear with other ocular anomalies, such as cataracts, glaucoma, corneal pannus, optic nerve hypoplasia, macular hypoplasia, or ectopia lentis. In the majority of cases, it is caused by mutation in the PAX6 gene, but it can also be caused by microdeletions that involve the 11p13 region. Twelve unrelated patients of Polish origin with a clinical diagnosis of aniridia were screened for the presence of microdeletions in the 11p13 region by means of multiplex ligation probe amplification (MLPA). Additionally, the coding regions of the PAX6 gene were sequenced in all probands. MLPA examination revealed different size deletions of the 11p13 region in five patients. In three cases, deletions encompassed the entire PAX6 gene and a few adjacent genes. In one case, a fragment of the PAX6 gene was deleted only. In the final case, the deletion did not include any PAX6 sequence. Our molecular findings provide further evidence of the existence of the distant 3′ regulatory elements in the downstream region of the PAX6 gene, which is known from other studies to influence the level of protein expression. Sequence analysis of the PAX6 gene revealed the three different point mutations in the remaining four patients with aniridia. All the detected mutations were reported earlier. Based on accomplished results, the great diversity of the molecular basis of aniridia was found. It varies from point mutations to different size deletions in the 11p13 region which encompass partly or completely the PAX6 gene or cause a position effect.  相似文献   

12.
13.
14.
The strictly regulated expression of most pleiotropic developmental control genes is critically dependent on the activity of long-range cis-regulatory elements. This was revealed by the identification of individuals with a genetic condition lacking coding-region mutations in the gene commonly associated with the disease but having a variety of nearby chromosomal abnormalities, collectively described as cis-ruption disease cases. The congenital eye malformation aniridia is caused by haploinsufficiency of the developmental regulator PAX6. We discovered a de novo point mutation in an ultraconserved cis-element located 150 kb downstream from PAX6 in an affected individual with intact coding region and chromosomal locus. The element SIMO acts as a strong enhancer in developing ocular structures. The mutation disrupts an autoregulatory PAX6 binding site, causing loss of enhancer activity, resulting in defective maintenance of PAX6 expression. These findings reveal a distinct regulatory mechanism for genetic disease by disruption of an autoregulatory feedback loop critical for maintenance of gene expression through development.  相似文献   

15.
Waardenburg syndrome (WS) is an autosomal-dominant neurocristopathy characterized by sensorineural hearing loss, pigmentary abnormalities of the iris, hair, and skin, and is responsible for about 3% of congenital hearing loss. Point mutations in PAX3 have been identified in more than 90% of affected individuals with WS Type 1/WS Type 3. MITF point mutations have been identified in 10-15% of individuals affected with WS Type 2 (lacking dystopia canthorum). Multiplex ligation-dependent probe amplification (MLPA) is now a standard technology in the molecular genetics laboratory to detect copy number changes in targeted genes. We employed MLPA for PAX3 and MITF in a cohort of patients submitted with a diagnosis of WS1, 2 or 3 who were sequence negative for PAX3 and/or MITF. All coding exons of PAX3 and exons 1, 2, 3, and 10 of MITF were included in the MLPA assay. MLPA on 48 patients with WS 1 or 3 revealed 3 PAX3 whole gene deletions (2 WS1; 1 WS3), 2 PAX3 partial gene deletions [WS1, exon 1 and promoter (1st report); WS1, exons 5-9], and 1 partial MITF deletion ("WS1", exons 3-10) (6/48 approximately 12.5%). MLPA on 41 patients with WS2 and 20 patients submitted with a diagnosis of either WS1 or WS2 revealed no copy number changes. The detection of both partial and whole gene deletions of PAX3/MITF in this clinical cohort increases the mutation detection yield by at least 6% and supports integrating MLPA into clinical molecular testing primarily for patients with WS1 and 3.  相似文献   

16.
17.
Gap junctions are assemblies of intercellular channels that regulate a variety of physiologic and developmental processes through the exchange of small ions and signaling molecules. These channels consist of connexin family proteins that allow for diversity of channel composition and conductance properties. The human connexin 43 gene, or GJA1, is located at human chromosome 6q22-q23 within the candidate region for the oculodentodigital dysplasia locus. This autosomal dominant syndrome presents with craniofacial (ocular, nasal, and dental) and limb dysmorphisms, spastic paraplegia, and neurodegeneration. Syndactyly type III and conductive deafness can occur in some cases, and cardiac abnormalities are observed in rare instances. We found mutations in the GJA1 gene in all 17 families with oculodentodigital dysplasia that we screened. Sixteen different missense mutations and one codon duplication were detected. These mutations may cause misassembly of channels or alter channel conduction properties. Expression patterns and phenotypic features of gja1 animal mutants, reported elsewhere, are compatible with the pleiotropic clinical presentation of oculodentodigital dysplasia.  相似文献   

18.
Screening for lactate dehydrogenase (LDH) subunit deficiencies was performed on 2880 blood samples from healthy individuals in the Fukuoka Prefecture in Japan by means of electrophoresis. The frequencies of heterozygotes with either LDH-A or LDH-B deficiency were found to be 0.104% at each locus. These estimated frequencies of either LDH-A or LDH-B deficiencies were slightly lower than, but not significantly different from, those found previously in Shizuoka Prefecture. The genetic mutations in individuals heterozygous for LDH-B deficiency were analyzed by the polymerase chain reaction and DNA conformation polymorphism. Abnormal migration patterns were observed in individuals heterozygous for LDH-B deficiency. Subsequent sequence determination of the mutant alleles revealed three novel mutations: an eight-base duplication in exon 3, a four-base duplication in exon 4, and a one-base deletion in exon 7 of the LDH-B gene. These three mutations result in frameshift translation and premature termination. In addition, the mutations resulting in the duplication of eight or four nucleotides appear to cause a decrease in the levels of LDH-B mRNA.  相似文献   

19.
Familial renal glucosuria is an inherited renal tubular disorder. A homozygous nonsense mutation in the SLC5A2 gene, encoding the sodium/glucose co-transporter SGLT2, has recently been identified in an affected child of consanguineous parents. We now report novel compound heterozygous mutations in the son of non-consanguineous parents. One allele has a p.Q167fsX186 mutation, which is expected to produce a truncated protein, and the other a p.N654S mutation involving a highly conserved residue. These findings confirm that mutations in the SLC5A2 gene are responsible for recessive renal glucosuria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号