首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We measured resting and peak metabolic rates (RMR and PMR, respectively) during development of chicks of seven species of shorebirds: least sandpiper (Calidris minutilla; adult mass 20-22 g), dunlin (Calidris alpina; 56-62 g), lesser yellowlegs (Tringa flavipes; 88-92 g), short-billed dowitcher (Limnodromus griseus; 85-112 g), lesser golden plover (Pluvialis dominicana; 150-156 g), Hudsonian godwit (Limosa haemastica; 205-274 g), and whimbrel (Numenius phaeopus; 380 g). We tested two opposing hypotheses: the growth rate-maturity hypothesis, which posits that growth rate in chicks is inversely related to functional maturity of tissues, and the fast growth rate-high metabolism hypothesis, which suggests that rapid growth is possible only with a concomitant increase in either RMR or PMR. We have found no evidence that chicks of shorebirds with fast growth rates have lower RMRs or lower PMRs, as would be predicted by the growth rate-maturity hypothesis, but our data suggested that faster-growing chest muscles resulted in increased thermogenic capacity, consistent with the fast growth-high metabolism hypothesis. The development of homeothermy in smaller species is a consequence primarily of greater metabolic intensities of heat-generating tissues. The maximum temperature gradient between a chick's body and environment that can be maintained in the absence of a net radiative load increased rapidly with body mass during development and was highest in least sandpipers and lowest among godwits. Chicks of smaller species could maintain a greater temperature gradient at a particular body mass because of their higher mass-specific maximum metabolic rates.  相似文献   

2.
In the present work, the following hypotheses were tested: (1) the negative effects of mycorrhization over host plant productivity in N-limited conditions are due to N retention by the fungal partner and not due to excessive C drainage; (2) If mycorrhization results in decreased N uptake, the host plant decreases its C investment in fungal growth. The effects of mycorrhization over a wide range of combinations between N availability, N concentration in plant tissues, and degree of mycorrhizal colonization were studied in Pinus pinaster L. mycorrhizal with Pisolithus tinctorius. Several plant productivity parameters, the seedlings’ N status, chl a fluorescence (JIP test), and mycorrhizal colonization were measured. N was always limiting. A gradient of mycorrhizal effects over the host plant’s growth and vitality was successfully obtained. The mycorrhizal effects on plant growth and N uptake were very strongly and positively correlated, and no evidence was found of a C limitation to growth, confirming hypothesis 1. Indications were found that the plants continued to provide C to the fungus although the N supplied by it was increasingly lower, denying hypothesis 2. A new index, the mycorrhizal N demand–supply balance, was found to efficiently explain, and to have a curvilinear relation with, the variation in response to mycorrhization. The mycorrhizal effect on host plant growth was not related to a negative effect on its photosynthetic performance and, therefore, reflected changes in resource allocation between host plant and mycorrhizal fungus, not in plant vitality.  相似文献   

3.
A mixture of organic chemicals (MOC) containing equal molar amounts of benzoic acid, hexadecane, 2,2‐dimethyl 4,n‐propyl‐benzene, phenanthrene, pyrene, and either cycloheptane or cis‐decahydronaphthalene (cis‐decalin) was applied to soil at rates of 0 to 8000 mg/kg. In a plant‐screening experiment, growth responses of four legume and five nonlegume species were determined at 10 and 25°C. The MOC applied at 2000 mg/kg reduced the growth of several species without resulting in significant seedling death. At 10°C, the growth of alpine bluegrass (Poa alpina L.) in the 1000 and 2000 mg/kg treatments of soil increased by more than 185%. In a plant growth response experiment, alpine bluegrass and alfalfa (Medicago sativa L.) were grown in soil that had been contaminated at rates of 0 and 2000 mg/kg. At 14 weeks, the shoot and root dry weights of alfalfa were 97% lower in the contaminated soil, while the shoot dry weight, root dry weight, and root length of alpine bluegrass were 135,235 and 268% higher, respectively. Except for pyrene, <23% of the compounds comprising the MOC remained in the soil after 4 weeks and <5% after 14 weeks. The disappearance of the MOC was not significantly influenced by the presence of alfalfa or alpine bluegrass.  相似文献   

4.
The effect of random fluctuations in daily ration on the growth performance of individual juvenile three-spined sticklebacks Gasterosteus aculeatus was studied in experiments lasting 21 days at 14°C and a photoperiod of 10L:14D. Two mean ration levels were used: a maintenance ration of 2%, and a high ration of 6% of initial body weight per day. For experimental fish, the daily ration varied randomly about the required mean value with a coefficient of variation of 33%. The controls received a constant daily ration. The experiment was replicated in winter (Dec.-Jan.) and spring (Mar.-Apr.). At a given ration, there was no significant difference between the specific growth rates of fish receiving constant or varying ration. Neither the final dry weight, final body water content nor final lipid content (% dry weight) differed significantly. As expected, ration had a significant effect on growth rate, final dry weight and body lipid and water content. There was a significant difference in mean growth rate between the winter and spring replicates. The growth rates observed in these experiments were compared with those predicted from a previously described empirical growth model developed for sticklebacks fed constant rations. The model underestimated mean growth rates.  相似文献   

5.
6.
Monounsaturated fatty acids (MUFA) have been viewed as either beneficial or neutral with respect to health; however, recent evidence suggests that MUFA may be associated with obesity and cardiovascular disease. Sex differences in MUFA composition have been reported in both rats and humans, but the basis for this sexual dimorphism is unknown. In the current study, enzymes involved in MUFA biosynthesis are examined in rat and cell culture models. Male and female rats were maintained on an AIN-93G diet prior to killing at 14 weeks of age after an overnight fast. Concentrations of 16:0 (2,757 ± 616 vs. 3,515 ± 196 μg fatty acid/g liver in males), 18:1n-7 (293 ± 66 vs. 527 ± 49 μg/g) and 18:1n-9 (390 ± 80 vs. 546 ± 47 μg/g) were lower, and concentrations of 18:0 (5,943 ± 1,429 vs. 3,987 ± 325 μg/g) were higher in phospholipids in livers from female rats compared with males. Hepatic elongase 6 mRNA and protein were 5.9- and 2.0-fold higher, respectively, in females compared with males. Stearoyl-CoA desaturase expression did not differ. Specific hormonal effects were examined in HepG2 cells cultured with varying concentrations of 17β-estradiol, progesterone and testosterone (0, 10, 30 and 100 nM) for 72 h. Progesterone and 17β-estradiol treatments increased, while testosterone decreased, elongase 6 protein. Sex differences in MUFA composition were associated with increased expression of hepatic elongase 6 in females relative to male rats, which appears to be mediated by sex hormones based on observations of hormonal treatments of HepG2 cells.  相似文献   

7.

Questions

Mycorrhizae may be a key element of plant nutritional strategies and of carbon and nutrient cycling. Recent research suggests that in natural conditions, intensity of mycorrhizal colonization should be considered an important plant feature. How are inter‐specific variations in mycorrhizal colonization rate, plant relative growth rate (RGR ) and leaf litter decomposability related? Is (arbuscular) mycorrhizal colonization linked to the dominance of plant species in nutrient‐stressed ecosystems?

Location

Teberda State Biosphere Reserve, northwest Caucasus, Russia.

Methods

We measured plant RGR under mycorrhizal limitation and under natural nutrition conditions, together with leaf litter decomposability and field intensity of mycorrhizal colonization across a wide range of plant species, typical for alpine communities of European mountains. We applied regression analysis to test whether the intensity of mycorrhizal colonization is a good predictor of RGR and decomposition rate, and tested how these traits predict plant dominance in communities.

Results

Forb species with a high level of field mycorrhizal colonization had lower RGR under nutritional and mycorrhizal limitation, while grasses were unaffected. Litter decomposition rate was not related to the intensity of mycorrhizal colonization. Dominant species mostly had a higher level of mycorrhizal colonization and lower RGR without mycorrhizal colonization than subordinate species, implying that they were more dependent on mycorrhizal symbionts. There were no differences in litter decomposability.

Conclusions

In alpine herbaceous plant communities dominated by arbuscular mycorrhizae, nutrient dynamics are to a large extent controlled by mycorrhizal symbiosis. Intensity of mycorrhizal colonization is a negative predictor for whole plant RGR . Our study highlights the importance of mycorrhizal colonization as a key trait underpinning the role of plant species in carbon and nutrient dynamics in nutrient‐limited herbaceous plant communities.
  相似文献   

8.
Little is known about intraspecific variation in fitness performance in response to thermal stress among natural populations and how this relates to evolutionary aspects of species ecology. In this study, population growth rate (PGR; a composite fitness measure) varied among five natural Chironomus riparius populations sampled across a climatic gradient when subjected to three temperature treatments reflecting the typical range of summer habitat temperatures (20, 24 and 28 °C). The variation could be explained by a complex model including effects of genetic drift, genetic diversity and adaptation to average temperature during the warmest month, in addition to experimental temperature. All populations suffered a decrease in PGR from 20 to 28 °C and ΔPGR was significantly correlated with the respective average habitat temperature in the warmest month—populations from warmer areas showing lower ΔPGR. This implies that long-term exposure to higher temperatures in the warmest month (the key reproductive period for C. riparius) is likely to be a key selective force influencing fitness at higher temperatures. A comparison of phenotypic divergence and neutral genetic differentiation revealed that one phenotypic trait—the number of fertile egg masses per female—appeared to be under positive selection in some populations. Our findings support a role for response to temperature selection along a climatic gradient and suggest population history is a key determinant of intraspecific fitness variation. We stress the importance of integrating different types of data (climatic, experimental, genetic) in order to understand the effects of global climate change on biodiversity.  相似文献   

9.
Herbaceous plants grown with free access to nutrients exhibit inherent differences in maximum relative growth rate (RGR) and rate of nutrient uptake. Measured rates of root respiration are higher in fast-growing species than in slow-growing ones. Fast-growing herbaceous species, however, exhibit lower rates of respiration than would be expected from their high rates of growth and nitrate uptake. We investigated why the difference in root O2 uptake between fast- and slow-growing species is relatively small. Inhibition of respiration by the build-up of CO2 in closed cuvettes, diurnal variation in respiration rates or an increasing ratio of respiratory CO2 release to O2 uptake (RQ) with increasing RGR failed to explain the relatively low root respiration rates in fast-growing grasses. Furthermore, differences in alternative pathway activity can at most only partly explain why the difference in root respiration between fast- and slow-growing grasses is relatively small. Although specific respiratory costs for maintenance of biomass are slightly higher in the fast-growing Dactylis glomerata L. than those in the slow-growing Festuca ovina L., they account for 50% of total root respiration in both species. The specific respiratory costs for ion uptake in the fast-growing grass are one-third of those in the slow-growing grass [0·41 versus 1·22 mol O2 mol (NO3)–1]. We conclude that this is the major cause of the relatively low rates of root respiration in fast-growing grasses.  相似文献   

10.
We have used the solid‐phase MetPLA TE, an enzyme assay that is specific for heavy‐metal toxicity, to investigate metal toxicity of soils that have been amended with urban wastewater sludges or contaminated with dry deposition from metal‐plating industries. We have shown that soil toxicity, using MetPLA TE, ranged from 21 to 72.5% inhibition of enzyme activity. Evin soil, which displayed the highest toxicity, also had the highest concentrations of Pb and Zn. Metal uptake studies with ryegrass grown on Evin soil, showed Zn, Cd, and Pb accumulation in the plant that exceeds the standard levels reported for grasses

Solid‐phase MetPLA TE was also used as a tool to study the reduction of heavy‐metal toxicity following soil amendments to immobilize metals in soil and thus reduce their toxicity. It was found that the addition of 1% hydrated manganese oxide significantly reduced dissolved metals in soil, their accumulation by ryegrass, and soil toxicity as shown by MetPLA TE.  相似文献   


11.
Among colonies with different foraging distances, central-place-foraging seabirds may change their foraging and reproductive efforts. We compared the body condition, meal frequency, and diving behavior of male and female Adélie penguins at two locations: Dumont d'Urville, where there was little sea ice and they foraged in open waters far from the colony; and Syowa, where there was heavy, fast sea ice and they foraged in ice cracks close to the colony. The parental mass decrease rate during the chick-rearing period was similar between colonies and between sexes. A large individual variation in meal frequency positively affected the brood growth rate, but daily underwater time did not. A weak but significant positive effect of body condition on brood growth rate was found only in males at Syowa. It was suggested that males work with better body condition than females. We propose the hypothesis that the regional difference in the distance to the feeding sites and the sex difference in body energy reserve might constrain the capacity to regulate reproductive effort.  相似文献   

12.
The chloroplast ATP synthase synthesizes ATP from ADP and free phosphate coupled by the electrochemical potential across the thylakoid membrane in the light. The light-dependent regulation of ATP synthase activity is carried out in part through redox modulation of a cysteine disulfide bridge in CF1 gamma-subunit. In order to investigate the function of the redox regulatory domain and the physiological significance of redox modulation for higher plants, we designed four mutations in the redox regulatory domain of the gamma-subunit to create functional mimics of the permanently reduced form of the gamma-subunit. While the inability to reduce the regulatory disulfide results in lower photosynthesis and growth, unexpectedly, the results reported here show that inability to reoxidize the dithiol may not be of any direct detriment to plant photosynthetic performance or growth.  相似文献   

13.
Recent studies of shift‐working women have reported that excessive exposure to light at night (LAN) may be a risk factor for breast cancer. However, no studies have yet attempted to examine the co‐distribution of LAN and breast cancer incidence on a population level with the goal to assess the coherence of these earlier findings with population trends. Coherence is one of Hill's “criteria” (actually, viewpoints) for an inference of causality. Nighttime satellite images were used to estimate LAN levels in 147 communities in Israel. Multiple regression analysis was performed to investigate the association between LAN and breast cancer incidence rates and, as a test of the specificity of our method, lung cancer incidence rates in women across localities under the prediction of a link with breast cancer but not lung cancer. After adjusting for several variables available on a population level, such as ethnic makeup, birth rate, population density, and local income level, a strong positive association between LAN intensity and breast cancer rate was revealed (p<0.05), and this association strengthened (p<0.01) when only statistically significant factors were filtered out by stepwise regression analysis. Concurrently, no association was found between LAN intensity and lung cancer rate. These results provide coherence of the previously reported case‐control and cohort studies with the co‐distribution of LAN and breast cancer on a population basis. The analysis yielded an estimated 73% higher breast cancer incidence in the highest LAN exposed communities compared to the lowest LAN exposed communities.  相似文献   

14.
There were no sex-related differences in spatial distribution, abundance or growth of juvenile coho salmon Oncorhynchus kisutch from two full-sibling families after 75 days rearing in an outdoor stream channel. These findings are not consistent with recent reports that aggressiveness and spatial distribution differ between males and females in juveniles of other streamdwelling salmonid species.  相似文献   

15.
The hypothesis that the direction of chromosome segregation in cell hybrids is determined by the interaction of parent cell cycles, or S-phase times, predicts that the segregant parent will always be the one with the longer cycle, or the longer S phase, and that late replicating chromosomes will be more frequently lost. We have tested this hypothesis by studying cell cycle parameters of mouse, Chinese hamster, and platypus parent cells and by observing chromosome loss and replication patterns in hybrids between them. Two types of hybrids have been studied: mouse-hamster hybrids showed gradual segregation, in one or other direction, of 10-60% chromosomes, while rodent-platypus hybrids (which could be selected under conditions optimal for either parent cell) showed rapid and extreme segregation of platypus chromosomes. We found no correlation between the direction of segregation and the relative lengths of parental cycle times, or phase times, nor between sequence of replication and frequency with which segregant chromosomes are lost. We therefore conclude that the direction and extent of segregation is not directly determined by the interaction of parental cycle or phase times.  相似文献   

16.
To estimate the accumulated food consumption and growth of juvenile Japanese flounder Paralichthys olivaceus, we investigated the relationships between individual food consumption and growth, and the change in the stable carbon isotope ratio (δ13C). Japanese flounder juveniles were individually reared and their diet was switched from one formulated feed EP1 (δ13C = − 19.47‰) to another EP3 (δ13C = − 17.21‰) and fed at different feeding regimes. After the switch, the δ13C content of the dorsal muscle was exponentially shifted to a different level in proportion to the feeding and growth rates. Therefore, measuring the carbon stable isotope ratio is a useful tool for estimating the food consumption and growth rate of juveniles. In addition, since the velocity of change and the asymptotic value of the carbon stable isotope ratio varied in muscle, caudal fin and liver tissue, different tissues can be used for different time scale estimations.  相似文献   

17.
Purified basic chitinase or #-1,3-glucanase or a combination of the two enzymes were applied to hyphae of the arbuscular mycorrhizal fungus Glomus mosseae grown in vitro. Chitinase applied to the hyphal tip produced an inhibition of hyphal extension, lysis of the apex and alterations of the growth pattern of the fungus. No effect was observed, however, when chitinase was applied to subapical parts of the hyphae or when glucanase was applied to any part of the hyphae. Application of a combination of the two enzymes to the hyphal tip produced an effect similar to that of chitinase alone.  相似文献   

18.
19.
Differences in light quality penetration within a leaf and absorption by the photosystems alter rates of CO2 assimilation in C3 plants. It is also expected that light quality will have a profound impact on C4 photosynthesis due to disrupted coordination of the C4 and C3 cycles. To test this hypothesis, we measured leaf gas exchange, 13CO2 discrimination (Δ13C), photosynthetic metabolite pools and Rubisco activation state in Zea mays and Miscanthus × giganteus under steady‐state red, green, blue and white light. Photosynthetic rates, quantum yield of CO2 assimilation, and maximum phosphoenolpyruvate carboxylase activity were significantly lower under blue light than white, red and green light in both species. However, similar leakiness under all light treatments suggests the C4 and C3 cycles were coordinated to maintain the photosynthetic efficiency. Measurements of photosynthetic metabolite pools also suggest coordination of C4 and C3 cycles across light treatments. The energy limitation under blue light affected both C4 and C3 cycles, as we observed a reduction in C4 pumping of CO2 into bundle‐sheath cells and a limitation in the conversion of C3 metabolite phosphoglycerate to triose phosphate. Overall, light quality affects rates of CO2 assimilation, but not the efficiency of CO2 concentrating mechanism.  相似文献   

20.
The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号