首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
WhenEscherichia coli harbouring theppm (earlier calledadi) mutation and the F′lacZU118 episome is subjected to lactose selection in the presence of suboptimal concentrations of glycerol, Lac+ colonies emerge after 5–6 days. They are shown to harbour an ochre suppressor mutation at 15.15 min. Inactivation ofrecA results in approximately four-fold reduction in the response. In theppm — ochre suppressor double mutant background the leakiness of thelacZ allele carried by F′ CC105 is enhanced, suggesting misreading of a valine codon (GUG) as glutamic acid codon (GAG). This is accompanied by reversion of thelacZ mutation tolacZ + (GTG → GAG). In LB medium both the leakiness and reversion are inhibited by streptomycin. Inactivation ofrecA did not affect leakiness but abolished reversion. These data are discussed in relation to the importance of allele leakiness and restricted growth in stationary-phase (adaptive) mutagenesis.  相似文献   

2.
One of the most studied examples of adaptive mutation is a strain of Escherichia coli, FC40, that cannot utilize lactose (Lac-) but that readily reverts to lactose utilization (Lac+) when lactose is its sole carbon source. Adaptive reversion to Lac+ occurs at a high rate when the Lac- allele is on an F' episome and conjugal functions are expressed. It was previously shown that nonselected mutations on the chromosome did not appear in the Lac- population while episomal Lac+ mutations accumulated, but it remained possible that nonselected mutations might occur on the episome. To investigate this possibility, a second mutational target was created on the Lac- episome by mutation of a Tn1O element, which encodes tetracycline resistance (Tetr), to tetracycline sensitivity (Tets). Reversion rates to Tetr during normal growth and during lactose selection were measured. The results show that nonselected Tetr mutations do accumulate in Lac- cells when those cells are under selection to become Lac+. Thus, reversion to Lac+ in FC40 does not appear to be adaptive in the narrow sense of the word. In addition, the results suggest that during lactose selection, both Lac+ and Tetr mutations are created or preserved by the same recombination-dependent mechanism.  相似文献   

3.
To study the variation in spontaneous mutation frequencies in different chromosomal domains, a mini-Mu-kan-lacZ transposable element was constructed to insert the lacZ (Trp570 → Opal) allele into many different loci in the Escherichia coli chromosome. Papillation on MacConkey lactose plates was used to screen for mini-Mu insertion mutants with elevated levels of spontaneous mutagenesis of lacZop → LacZ+ candidates were then screened for normal mutation frequencies in other genes. Two different insertion mutants with this enhanced mutagenesis phenotype were isolated from 14 000 colonies, and named plm-1 (preferential lacZmutagenesis) and plm-2. The frequency of LacZ→ LacZ+ mutations in these plm mutants was over 400-fold higher than that in isogenic strains containing mini-Mu-kan-lacZop insertions at other loci. Six Lac+ reversion (or suppression) mutations obtained from each of the two plm mutants were mapped by P1 transduction and all were found to be linked to the Kanr gene in the mini-Mu-kan-lacZop, suggesting that a localized mutagenic event is responsible for the preferential mutagenesis. Furthermore, both the LacZ+→ LacZand Kanr→ Kans mutant frequencies of these Lac+ revertants were in the range of 10−3 to 10−2, indicating that this putative localized mutagenesis is neither allele nor gene specific. To identify the plm loci, the chromosomal regions flanking the mini-Mu insertion sites were cloned and sequenced. A computer-assisted database search of homologous sequences revealed that the plm-1 locus is identical to the mutS gene; the mini-Mu insertion most probably results in the production of a truncated MutS protein. We suggest that the enhanced lacZ mutation frequency in plm-1 may be associated with an active process involving the putative truncated MutS protein. The DNA sequence of the plm-2 locus matched a putative malate oxidoreductase gene located at 55.5 min of the E. coli chromosome. Received: 1 August 1996 / Accepted: 3 April 1997  相似文献   

4.
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F′lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F′lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F′lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F′lac copies divide very little under selection but have enough energy to replicate their F′lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.  相似文献   

5.
6.
A super-repressed mutant of purR (purRS), which encodes a repressor protein controlling expression of purine biosynthetic genes inSalmonella typhimurium, grew very slowly on NCE medium with 10 μg/mL Ade and lactose as sole carbon source (cannot form colonies). However, a phenomenon of late-arising mutations was observed when purRS mutants were spread on NCE+lactose plates and subjected to a prolonged non-lethal selection. The reconstruction experiments of revertants showed that the late-arising “lac+” mutants are not slow growing mutants. Statistical analysis indicated that the distribution of late-arising mutants is Poisson distribution, showing that reversion occurred after plating. The result of co-transductional analysis preliminarily showed that late-arising mutation occurred at selected genepurR or 16 bp PUR box,cis element of structural genepurD. The above results suggest that the phenomenon of late-arising mutation observed by our system is a result of adaptive mutations which are different from random mutations. This is the first time to extend target genes at which adaptive mutations could occur from structural genes involved in carbon metabolism and amino acid biosynthesis totrans regulatory gene coding repressor protein. Our results have provided not only a new proof for generality of adaptive mutations but also a new system for study on adaptive mutations.  相似文献   

7.
A super-repressed mutant of purR (purRs), which encodes a repressor protein controlling expression of purine biosynthetic genes in Salmonella typhimurium, grew very slowly on NCE medium with 10 μg/mL Ade and lactose as sole carbon source (cannot form colonies). However, a phenomenon of late-arising mutations was observed when purRs mutants were spread on NCE+lactose plates and subjected to a prolonged non-lethal selection. The reconstruction experiments of revertants showed that the late-arising "lac+" mutants are not slow growing mutants. Statistical analysis indicated that the distribution of late-arising mutants is Poisson distribution, showing that reversion occurred after plating. The result of co-transductional analysis preliminarily showed that late-arising mutation occurred at selected gene purR or 16 bp PUR box, cis element of structural gene purD. The above results suggest that the phenomenon of late-arising mutation observed by our system is a result of adaptive mutations which are different  相似文献   

8.
9.
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac+ mutants, with and without evidence of descent from the HMS, have similar Lac+ mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac+ mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.  相似文献   

10.
Stabilization of Lactose Metabolism in Streptococcus lactis C2   总被引:16,自引:9,他引:7       下载免费PDF全文
The integration of the lactose plasmid from lactic streptococci into the host chromosome could stabilize this trait for dairy fermentations. Sixty lactose-positive (Lac+) transductants of lactose- and proteinase-negative (Lac Prt) LM0220 were induced for temperature phage by UV irradiation or mitomycin C. Four of the transductants, designated KB18, KB21, KB54, and KB58, yielded lysates demonstrating less than one Lac+ transductant per 0.2 ml of phage lysate. Successive transferring in the presence of acriflavine did not yield Lac segregants from KB18, KB21, KB54, or KB58, whereas Streptococcus lactis C2 (parent culture) and three other Lac+ transductants showed 12 to 88% conversion from Lac+ to Lac within 6 to 10 repetitive transfers. When grown in continuous culture, KB21 did not show any Lac variants in 168 h, while S. lactis C2 had 96% conversion from Lac+ to Lac in 144 h. Agarose gel electrophoresis of plasmid DNA isolated from KB18, KB21, KB54, and KB58 revealed that the lactose plasmid, pLM2103, normally present in Lac+ transductants, was missing. This suggested integration of the transferred lactose plasmid into the chromosome. In contrast to phage lysates induced from S. lactis C2, which exhibited an exponential decrease in the number of Lac+ transductants after exposure to small doses of UV irradiation, the transduction frequency for lactose metabolism was stimulated by UV irradiation of lysates from KB58. The latter indicated chromosomal linkage for lac and that integration of the lactose genes plasmid into the chromosome had occurred.  相似文献   

11.
Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac+) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F′lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F′lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac+ triggers exponential cell growth leading to a stable Lac+ revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac+ colony. Cells with multiple copies of the F′lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac+ revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns–Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.  相似文献   

12.
When the Lac- strain of Escherichia coli, FC40, is incubated with lactose as its sole carbon and energy source, Lac+ revertants arise at a constant rate, a phenomenon known as adaptive mutation. Two alternative models for adaptive mutation have been proposed: (i) recombination-dependent mutation, which specifies that recombination occurring in nongrowing cells stimulates error-prone DNA synthesis, and (ii) amplification-dependent mutation, which specifies that amplification of the lac region and growth of the amplifying cells creates enough DNA replication to produce mutations at the normal rate. Here, we examined several of the predictions of the amplification-dependent mutation model and found that they are not fulfilled. First, inhibition of adaptive mutation by a gene that is toxic when overexpressed does not depend on the proximity of the gene to lac. Second, mutation at a second locus during selection for Lac+ revertants is also independent of the proximity of the locus to lac. Third, mutation at a second locus on the episome occurs even when the lac allele under selection is on the chromosome. Our results support the hypothesis that most Lac+ mutants that appear during lactose selection are true revertants that arise in a single step from Lac- cells, not from a population of growing or amplifying precursor cells.  相似文献   

13.
The reversion behavior of pleiotropic carbohydrate mutants, previously designated as ctr, was studied. The mutants revert to complete restoration of the wild-type phenotype, as well as to a spectrum of partial wild-type phenotypes. Lac+ reversions were found in the lac region (11 min) and some Mal+ reversions occurred at malB (79 min), at a distance from the site of the ctr mutations (46 to 47 min). About one-third of Lac+ and Mal+ revertants were constitutive for uptake of their respective substrates, and one-third modified for inducibility. The remaining third were not distinguishable from wild type. Induction of a ctr mutation in a lac constitutive strain, either operator or repressor mutant, did not affect lactose metabolism. A polar-like ctr mutant, deficient in both enzyme I and heat-stable protein of the phosphoenolpyruvate-dependent phosphotransferase strain was also described. Partial revertants of ctr were still found to lack enzyme I.  相似文献   

14.
15.
Reversion of a lac(-) frameshift allele carried on an F' episome in Escherichia coli occurs at a high rate when the cells are placed under lactose selection. Unlike Lac(+) mutations that arise during nonselective growth, the production of these adaptive mutations requires the RecA-RecBCD pathway for recombination. In this report, we show that enzymes that process recombination intermediates are involved in the mutagenic process. RuvAB and RecG, E. coli's two enzymes for translocating Holliday junctions, have opposite effects: RuvAB is required for RecA-dependent adaptive mutations, whereas RecG inhibits them.  相似文献   

16.
Věchet  B. 《Folia microbiologica》1968,13(5):379-390
The mutational synergism of caffeine and acriflavine was studied in five types ofEscherichia coli mutants induced by u. v.-radiation. The following types of mutations were compared: streptomycinrresistance (strain B/r), streptomycin-independence (strain Sd-4), and reversions to prototrophy (strains WP-14 pro, WP-2 try, and WP-2 try hcr). In all hcr+ strains tested the presence of caffeine or acriflavine in a post-irradiation plate medium slightly decreases the survival of u.v.-irradiated cells and increases considerably the frequency of induced mutations. The mutational synergism of caffeine and acriflavine in the str-r and str-i mutants is observed only within the range of low doses. The abovementioned dose-dependence of the synergistic effect is discussed from the point of view of qualitative difference between the premutational damage caused by low and high doses. The post-irradiation treatment by caffeine slightly increases the frequency of induced prototrophs also in the WP-2 hcr strain. This finding is explained by the inhibition of the residual HCR-activity of the strain. The post-irradiation mutational synergism of acriflavine was not found in the WP-2 hcr strain.  相似文献   

17.
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression.  相似文献   

18.
Summary Conjugation between lactose-fermenting (Lac+)Streptococcus lactis C2 and Lac Leuconostoc cremoris CAF7 was performed. The frequency of Lac+ transfer was 1.5 · 10–2 per donor cell. Lac+ Leuconostoc transconjugants could ferment lactose significantly faster than wild-type cells. When grown in litmus milk fortified with 0.2% yeast extract, Lac+ transconjugants reached pH 4.68 within 24 h at 30°C and produced diacetyl. The identity of the transconjugants asLeuconostoc derivatives was confirmed by their resistance to phage c2 and to vancomycin (>500 g/ml), and by growth on selective medium containing azide. Plasmid profiles of 10 transconjugants showed two unique patterns. A novel enlarged plasmid was found. Southern blot hybridization revealed some homology with the 30 Md Lac+ plasmid of donor, recipient and the transconjugants, as well as with some of the remaining plasmids of the donor.Technical Paper No. 7953, Oregon Agricultural Experiment Station.  相似文献   

19.
To study the variation in spontaneous mutation frequencies in different chromosomal domains, a mini-Mu-kan-lacZ ?transposable element was constructed to insert the lacZ ?(Trp570 → Opal) allele into many different loci in the Escherichia coli chromosome. Papillation on MacConkey lactose plates was used to screen for mini-Mu insertion mutants with elevated levels of spontaneous mutagenesis of lacZop → LacZ+ candidates were then screened for normal mutation frequencies in other genes. Two different insertion mutants with this enhanced mutagenesis phenotype were isolated from 14?000 colonies, and named plm-1 (preferential lacZmutagenesis) and plm-2. The frequency of LacZ?→ LacZ+ mutations in these plm mutants was over 400-fold higher than that in isogenic strains containing mini-Mu-kan-lacZop insertions at other loci. Six Lac+ reversion (or suppression) mutations obtained from each of the two plm mutants were mapped by P1 transduction and all were found to be linked to the Kanr gene in the mini-Mu-kan-lacZop, suggesting that a localized mutagenic event is responsible for the preferential mutagenesis. Furthermore, both the LacZ+→ LacZ?and Kanr→ Kans mutant frequencies of these Lac+ revertants were in the range of 10?3 to 10?2, indicating that this putative localized mutagenesis is neither allele nor gene specific. To identify the plm loci, the chromosomal regions flanking the mini-Mu insertion sites were cloned and sequenced. A computer-assisted database search of homologous sequences revealed that the plm-1 locus is identical to the mutS gene; the mini-Mu insertion most probably results in the production of a truncated MutS protein. We suggest that the enhanced lacZ mutation frequency in plm-1 may be associated with an active process involving the putative truncated MutS protein. The DNA sequence of the plm-2 locus matched a putative malate oxidoreductase gene located at 55.5 min of the E. coli chromosome.  相似文献   

20.
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号