首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Deficiency of inorganic phosphate caused the hyper production of invertase and the derepression of acid phosphatase in a continuous culture ofSaccharomyces carlsbergensis. The specific invertase activity was 40,000 enzyme units per g dry cell weight at a dilution rate lower than 0.05 h–1 with a synthetic glucose medium of which the molecular ratio of KH2PO4 to glucose was less than 0.006. This activity is eight fold higher than in a batch growth and 1.5 fold as much as the highest enzyme activity observed so far in a glucose-limited continuous culture.For the hyper production of invertase, it is necessary to culture the yeast continuously by keeping the Nyholm's conservative inorganic phosphate concentration at less than 0.2 m mole per g dry weight cell. The derepression of acid phosphatase brought about by phosphate deficiency, was similar in both batch and continuous cultures.Nomenclature D dilution rate of continuous culture (h–1) - Ei invertase concentration in culture (enzyme unit l–1) - Ep acid phosphatase concentration in culture (enzyme unit l–1) - P inorganic phosphate concentration in culture (mM) - S glucose concentration in culture (mM) - X cell concentration in culture (g dry weight cell l–1) Greek Letter specific rate of growth (h–1) Suffix f feed - 0 initial value  相似文献   

2.
Acid phosphatase [AP; EC 3.1.3.2], a key enzyme involved in the synthesis of mannitol in Agaricus bisporus, was purified to homogeneity and characterized. The native enzyme appeared to be a high molecular weight type glycoprotein. It has a molecular weight of 145 kDa and consists of four identical 39-kDa subunits. The isoelectric point of the enzyme was found at 4.7. Maximum activity occurred at 65°C. The optimum pH range was between 3.5 and 5.5, with maximum activity at pH 4.75. The enzyme was unaffected by EDTA, and inhibited by tartrate and inorganic phosphate. The enzyme exhibits a K m for p-nitrophenylphosphate and fructose-6-phosphate of 370 M and 3.1 mM, respectively. A broad substrate specificity was observed with significant activities for fructose-6-phosphate, glucose-6-phosphate, mannitol-1-phosphate, AMP and -glycerol phosphate. Only phosphomonoesters were dephosphorylated. Antibodies raised against the purified enzyme could precipitate AP activity from a cell-free extract in an anticatalytic immunoprecipitation test.  相似文献   

3.
Trehalase was purified from cultures of Frankia strain ArI3 grown on media with or without NH4Cl. The purified enzyme was specific for trehalose, exhibited a broad pH optimum of pH 4.5 to 5.3 and had a K m for trehalose of 4.2 mM. The trehalase was inhibited in vitro completely by sucrose, glucose and mannose and partially by mannitol and sorbitol. In addition to the specific trehalase, a mixture of non-specific - and -glucosidases which exhibited some activity with ,-trehalose as a substrate were also partially purified in Frankia extracts made from nitrogen-fixing cells. These enzymes were not detected in the purifications of crude extracts made from non-nitrogen-fixing cells (grown on media supplemented with NH4Cl). Trehalase activity in crude extracts increased over time when cells were induced to fix nitrogen, and the maximum specific activity of trehalase from nitrogen-fixing cultures was 4 times the maximum activity from non-fixing cultures. Trehalase activity was also examined in crude extracts made from Frankia vesicle clusters isolated from Alnus rubra nitrogen-fixing nodules infected with ArI3. The maximum activity of trehalase in these clusters was 6–7 times greater than in the nitrogenfixing pure cultures of ArI3 and 26–33 times greater than the non-fixing pure cultures.Abbreviations pcv packed cell volume - DTE dithioerythritol - PMSF phenylmethylsulphonylfluoride - EDTA sodium ethylenediaminetetraacetate  相似文献   

4.
M. Godeh  J. Udvardy  G. L. Farkas 《Planta》1981,152(5):408-414
Ascorbic acid (AA) increased the phosphatase activity (pH 6.8) in 10,000 g supernatants from Anacystis nidulans. The enzyme activated by AA was deactivated by dehydroascorbic acid (DHAA). The modulation by AA/DHAA of phosphatase activity in Anacystis appears to be specific; a number of other redox compounds, known to modulate other enzymes, had no effect on the Anacystis phosphatase. A purified phosphatase preparation from Anacystis was also deactivated by DHAA. In contrast, the purified enzyme was not activated by AA, suggesting that a factor mediating the effect of AA was lost during purification. Another factor was found to protect the purified phosphatase against deactivation by DHAA. The enzyme was characterized as a phosphatase with a broad substrate specificity, an apparent molecular weight of 19,000, and a pH optimum of 6.0–7.0. Dialysis of the enzyme preparation against EDTA abolished the phosphatase activity which could be restored by Zn2+ ions and partially restored by Co2+ ions. Crude extracts also contained a latent enzyme, the phosphatase activity of which could be detected in the presence of Co2+ ions only. Zn2+ ions did not activate this enzymatically inactive protein. The Co2+-dependent phosphatase had an apparent mol. wt. of 40,000, a broad substrate specificity, and an alkaline pH-optimum. Infection of Anacystis cultures by cyanophage AS-1 resulted in a decrease in phosphatase activity. The enzyme present in 10,000 g supernatants from infected cells could not be modulated by the AA/DHAA system.Abbreviations AA ascorbic acid - DEAE diethylamino ethyl - DHAA dehydroascorbic acid - EDTA ethylene-diaminetetra-acetate - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG oxidized glutathione - HMP hexose monophosphate - P i inorganic phosphorus - pNPP p-nitrophenylphosphate - pNP p-nitrophenol - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

5.
A soluble protein phosphatase from the promastigote form of the parasitic protozoanLeishmania donovani was partially purified using Sephadex G-100, DEAE-cellulose and again Sephadex G-100 columns. The partially purified enzyme showed a native molecular weight of about 42, 000 in both Sephadex G-100 and sucrose density gradient centrifugation. The sedimentation constant, stokes radius and frictional ratio were found to be 3.43S, 2.8 nm and 1.20 respectively. The enzyme preferentially utilized phosphohistone as the best exogenous substrate. Mg2+ ions were essential for enzyme activity; among other metal ions Mn2+ can replace Mg2+ to a certain extent whereas Ca2+, Co2+ and Zn2+ could not substitute for Mg2+. The pH optimum of the enzyme was 6.5–7.5 and the temperature optimum 37°C. The apparent Km for phosphohistone was 7.14 M. ATP, ADP, inorganic phosphate and pyrophosphate had inhibitory effect on the enzyme activity whereas no inhibition was observed with sodium tartrate and okadaic acid. These results suggest thatL. donovani promastigotes possess a protein phosphatase which has similar characteristics with the mammalian protein phosphatase 2C.Abbreviations PMSF phenylmethylsulfonyl fluoride - DTT dithiothreitol - TCA trichloroacetic acid - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - EGTA Ethyleneglycol-bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid  相似文献   

6.
Summary Acid phosphatase was studied by means of electron microscope cytochemistry in glutaraldehyde-fixed myxamoebae of Dictyostelium discoideum grown on dead bacteria. The enzyme activity was localized to the digestive vacuoles in vegetative as well as in aggregating cells. Biochemical experiments showed that the enzyme was not inactivated by fixation in 2% purified glutaraldehyde.Abbreviations used NPP p-nitrophenyl phosphate - NP p-nitrophenol - GP -glycerophosphate - glc-6-P glucose-6-phosphate - Pi orthophosphate  相似文献   

7.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

8.
Smart  J. B.  Dilworth  M. J.  Robson  A. D. 《Archives of microbiology》1984,140(2-3):281-286
The effect of P nutrition on phosphate uptake and alkaline phosphatase activity was studied in chemostat culture for four rhizobial and three bradyrhizobial species. Phosphate-limited cells took up phosphate 10- to 180-fold faster than phosphate-rich cells. The four fast-growing rhizobial strains contained high levels of alkaline phosphatase activity under P-limited conditions compared to the repressed levels found in P-rich cells; alkaline phosphatase activity could not be detected in three slow-growing rhizobial strains, regardless of their P-status.Glycerol 1-phosphate-uptake in the cowpea Rhizobium NGR234 was derepressed over 50-fold under P-limited conditions, and appeared to be co-regulated with phosphate uptake.The phosphate-uptake system appeared similar in all strains with apparent K m values ranging from 1.6 M to 6.0 M phosphate and maximum activities from 17.2 to 126 nmol · min-1 · (mg dry weight of cells)-1. Carbonyl cyanide m-chlorophenyl hydrazone strongly inhibited phosphate uptake in all strains and a number of other metabolic inhibitors also decreased phosphate uptake in the cowpea Rhizobium NGR234. The phosphate uptake system in all strains failed to catalyse exchange of 32P label in preloaded cells or efflux of phosphate. The results suggest a single, repressible, unidirectional and energy-dependent system for the transport of phosphate into rhizobia.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulphonic acid  相似文献   

9.
Summary A strain of Escherichia coli exhibiting reduced activity of the periplasmic enzyme acid phosphoanhydride phosphohydrolase (pH 2.5 acid phosphatase) was isolated. The mutation designated appA1 was located at 22.5 min on the E. coli genetic map. Acid phosphatase purified from an appA transductant showed less than ten percent of the specific activity of an isogenic appA +strain. The mutant enzyme was highly thermolabile and its Km for paranitrophenyl phosphate was increased about 20-fold. The mutant protein cross-reacted with antibody to the wild-type enzyme and had the same molecular weight and concentration in extracts as the wild-type enzyme. These findings strongly suggest that appA is the structural gene of the acid phosphatase.Abbreviations PNPP paranitrophenyl phosphate - cAMP 3-5-cyclic adenosine monophosphate - Nitrosoguanidine N-methyl-N'-nitro-N-nitrosoguanidine - TCY tetracycline - KAN kanamycin - STR streptomycin  相似文献   

10.
A enzyme that catalyzed the specific formation of ascorbic acid-2-phosphate (AsA2P) from ascorbic acid (AsA) and adenosine-5′-triphosphate (ATP), was purified 3,200-fold to homogeneity from a cell extract of Pseudomonas azotocolligans. The purified enzyme appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and consisted of a single polypeptide with a molecular weight of about 30,000. Of phosphoryl donors tested, p-nitrophenylphosphate (p-NPP) and pyrophosphate (PPi) were as effective as ATP. Optimal pHs for the phosphorylating activity were around 4.0 and 5.5 when PPi and ATP were used as phosphoryl donors, respectively. The Km for AsA was 147 mm. The enzyme activity was inhibited by Cu2+, but not by sulfhydryl reagents.

The enzyme simultaneously had phosphatase activity at weakly acidic or neutral pH and the Km for p-NPP in the phosphatase activity was 0.38 mm. The enzyme was tentatively named “ascorbic acid phosphorylating enzyme.”  相似文献   

11.
A glucosyltransferase, which catalyses the glucosylation of flavonols, using uridine diphosphate-D-glucose as glucose donor, has been isolated and purified about 5–10 fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The pH optimum for this reaction was ca. 8.5 in glycine-NaOH buffer, and no additional cofactors were required. The enzyme glucosylated the following flavonols predominantly at the 3-position: quercetin (Km 126 M), kaempferol (Km 172 M), isorhamnetin (Km 200 M) and fisetin (Km 270 M). With quercetin as substrate, the apparent Km value for uridine diphosphate-D-glucose was 0.3 M. Glucosylation of flavonols and flavones by this preparation occurred weakly also at the 7-position. No activity was found with dihydroquercetin, naringenin, 4,2,4-trihydroxychalcone, daidzein or texasin. The enzyme was specific for flavonoid compounds, since no activity was observed towards cinnamic acids or simple phenols. However, the preparation was contaminated by a vanillic acid glucosyltransferase, from which it could be partially separated by ionexchange chromatography. The specific activity of the flavonol 3-O-glucosyltransferase increased with age of the culture, reaching a maximum late in the growth cycle of the culture.Abbreviations SAM S-adenosyl-L-methionine - CMT, SAM caffeate 3-O-methyltransferase - FMT, SAM flavonoid O-methyltransferase - UDP-glucose uridine diphosphate-D-glucose - PAL phenylalanine ammonia-lyase  相似文献   

12.
The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium.  相似文献   

13.
GTP cyclohydrolase which catalyzes the formation of formic acid and a pterin compound from guanosine-5′-triphosphate (GTP) has been partially purified from extracts of Serratia indica IFO 3759. 14C-Formic acid eliminated from (8-14C)GTP is oxidized with mercury acetate to 14CO2, which is trapped by β-phenylethylamine. The molecular weight of the enzyme is approximately 170,000 and the enzyme is relatively heat-stable. The enzyme activity is strongly inhibited by GDP and ATP, but not by other nucleotides. Inhibition by GDP is competitive with GTP. Metals, such as Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Al3+, Hg2+ and p-chloromercuribenzoate strongly inhibit the enzyme activity. The activity is also inhibited by . The pterin product has been characterized as a derivative of neopterin triphosphate by enzymatic degradations, ultraviolet spectra, fluorescence and excitation spectra, thin-layer chromatography and thin-layer electrophoresis. The product is estimated to differ from d-erythro-neopterin triphosphate prepared from the enzyme system of Escherichia coli B, since (1) only one mole of phosphate can be liberated by alkaline phosphatase and two moles of phosphates by phosphodiesterase and alkaline phosphatase from the product, and (2) the retention time of the product on high-performance liquid chromatography is different from that of d-erythro-neopterin triphosphate.  相似文献   

14.
Andriotis VM  Ross JD 《Planta》2004,219(2):346-358
The acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) complement from dormant hazel (Corylus avellana L.) seeds was found to exhibit significant electrophoretic heterogeneity partially attributable to the presence of distinct molecular forms. In axiferous tissue, total acid phosphatase activity increased in a biphasic fashion during chilling, a treatment necessary to alleviate seed dormancy. Three acid phosphatase isozymes were isolated from cotyledons of dormant hazel seeds by successive ammonium sulphate precipitation, size-exclusion, Concanavalin A affinity, cation- and anion-exchange chromatographies resulting in 75-, 389- and 191-fold purification (APase1, APase2, APase3, respectively). The three glycosylated isoforms were isolated to catalytic homogeneity as determined by electrophoretic, kinetic and heat-inactivation studies. The native acid phosphatase complement of hazel seeds had an apparent Mr of 81.5±3.5 kDa as estimated by size-exclusion chromatography, while the determined pI values were 5.1 (APase1), 6.9 (APase2) and 7.3 (APase3). The optimum pH for p-nitrophenyl phosphate hydrolysis was pH 3 (APase1), pH 5.6 (APase2) and pH 6 (APase3). The hazel isozymes hydrolysed a variety of phosphorylated substrates in a non-specific manner, exhibiting low Km and the highest specificity constant (Vmax/Km) for pyrophosphate. They were not primary phytases since they could not initiate phytic acid hydrolysis, while APase2 and APase3 had significant phospho-tyrosine phosphatase activity. Inorganic phosphate was a competitive inhibitor, while activity was significantly impaired in the presence of vanadate and fluoride.Abbreviations APase Acid phosphatase (EC 3.1.3.2) - ConA Concanavalin A–Sepharose 4B - CV Column volume - -GP -Glycerophosphate - IEF Isoelectric focusing - IP6 Phytic acid - pNPP p-Nitrophenyl phosphate - PAGE Polyacrylamide gel electrophoresis - PPi Pyrophosphate  相似文献   

15.
Summary One of the most important indicators in vitro of the bone-cell phenotype is the synthesis of mineralized bone-like tissue. This has been achieved by supplementing isolated bone-cell and tissue cultures with organic phosphates, in particular, -glycerophosphate. To analyze the effects of -glycerophosphate on bone-cell metabolism and osteogenesis in vitro, both biochemical analyses and computer-assisted morphometry were used. Simultaneous autoradiographic and histochemical analyses of proliferating and alkaline phosphatase-positive cells were used to measure osteogenic events at the cellular level. Morphometric data showed that -glycerophosphate-treated cultures mineralized, but exhibited significantly less bone matrix (P < 0.05) than non-mineralizing controls. Cultures treated with inorganic phosphate failed to mineralize. Cellular proliferation was unaffected by -glycerophosphate; however, there was a decrease in the amount of 3H-thymidine incorporation into the DNA of -glycerophosphate-treated cells as detected by autoradiography. The percentage of alkaline phosphatase-positive cells was identical in -glycerophosphate-treated or control cultures. In agreement with previous biochemical results, there was a decrease in the amount of alkaline phosphatase enzyme activity per cell. The kinetics of alkaline phosphatase enzymes were measured on individual cells by microdensitometry. -Glycerophosphate-treated cultures exhibited more rapid reaction rates than control cultures (p < 0.05). Taken together, the results suggest that -glycerophosphate has global effects on bone-cell metabolism in vitro including its importance in mineralization.  相似文献   

16.
The over-expressed extracellular sucrase (SacC) of Zymomonas mobilisfrom a recombinant Escherichia coli (pZSP62) carrying the sacC gene was purified partially by repeated cycles of freezing and thawing. This method separated the highly expressed recombinant protein from the bulk of endogenous E. coli proteins. The enzyme was further purified 14 fold with a 55% yield from the cellular extract of E. coli by hydroxyapatite chromatography. The purified enzyme had a Mr of 46 kDa by SDS-PAGE. Its km value for sucrose was 86 mM and was optimal at pH 5.0 and at 36°C.  相似文献   

17.
Summary Then-acetyl-d-glucosamine-1-phosphate: dolichol phosphate transferase fromArtemia has been partially purified and characterized. The enzyme is solubilized from crude microsomes using Triton X-100, and after detergent removal appears to be associated with phospholipids. Using dolichol phosphate and UDP-n-acetyl-d-glucosamine as substrates, the enzyme catalyzes the formation of dolichol-pyrophosphate-n-acetyl-d-glucosamine. the product identity has been verified by TLC and paper chromatography following mild acid hydrolysis. Under the incubation conditions used only one product is made, i.e., Dol-p-p-GlcNAc. The formation of product is linear with increasing amounts of added protein and with time of incubation. The enzyme requires magnesium ions for activity. Activity of the enzyme is stimulated 6-fold by exogenous dolichol phosphate and is also stimulated by added phospholipids, with optimal activity being obtained in the presence of mixtures of phosphatidylcholine and phosphatidylglycerol. Enzymatic activity is not increased upon addition of GDP-mannose or dolichol phosphate mannose. The enzyme is rapidly inactivated by exposure to several detergents, including Triton X-100 and deoxycholate. The activity is inhibited by tunicamycin and by the purified B2 homologue of this antibiotic. Other antibiotic inhibitors such as diumycin and polyoxin D have little effect on the enzyme. Both the microsomal and solubilized enzyme preparations are inactivated by 70% upon treatment with phospholipase A2; activity may be restored by addition of phospholipids. Following hydrophobic interaction chromatography on Phenyl Sepharose, gel filtration chromatography on Sepharose CL-4B indicated that the enzyme, purified 81-fold, contained phophatidylcholine and phosphatidyl-ethanolamine.Abbreviations SDS sodium dodecyl sulfate - PMSF phenyl methanesulfonylfluoride - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - GlcNAc N-acetyl-d-glucosamine - Dol-PP-GlcNAc dolichol pyrophosphate N-acetyl-d-glucosamine - Dol-P-man dolichol-phosphate-mannose - Dol-PP- (GlcNAc)2 dolichol-pyrophosphate-di-N- acetylchitobiose - DMSO dimethylsulfoxide - C:M (2:1) chloroform:methanol (2:1) - C:M:W (10:10:3) chloroform:methanol:water (10:10:3) - GlcNAc-1-P N-acetyl-d-glucosamine-1-phosphate - Dol-P dolichol phosphate - EGTA ethylene glycol bis (b-aminoethyl ether)-NNNN tetraacetic acid  相似文献   

18.
Summary NADP-dependent glutamate dehydrogenase from Dictyostelium discoideum was purified 9300 fold with a yield of 4.6%. The enzyme is a hexamer of apparent molecular weight 294 kDa on Sephacryl S400 and a subunit molecular weight of 52 kDa as determined by SDS gel electrophoresis. The apparent KmS for -ketoglutarate, NADPH and NH inf4 sup+ are 1.2 mM, 9.7 µM and 2.2 mM respectively, and the purified enzyme has a broad pH optimum with a peak at pH 7.75. GTP has a slight stimulatory effect (22% at 83 µM) as does ADP (11% at 1 mM), and AMP is slightly inhibitory (9% at 1 mM) whereas adenosine, ATP and cAMP have little or no effect. Neither the Zn2+ chelating compound 1,10-phenanthroline nor EDTA have any effect on the enzyme while p-hydroxymercuribenzoic acid inhibits enzyme activity (50% at 80 µM) yet N-ethylmaleimide does not.In addition, the NADP-GDH activity varies little during the various stages of morphogenesis.Abbreviations EDTA Ethylenediamine Tetraacetic Acid - Tris Tris(hydroxymethyl)aminomethane - Bis-tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - TRITON X-100 iso-octylphenoxypoly-ethoxyethanol - pHMB p-Hydroxymercuribenzoic acid  相似文献   

19.
The cytosolic pyruvate kinase (PKC, EC 2.7.1.40) and phosphoenolpyruvate carboxylase (PEP-Case, EC 4.1.1.31) from cotyledons of 6-d-old castor seedlings (Ricinus communis L.) have been partially purified and characterized. PKC was purified 370-fold to a specific activity of 20 mol · min 1·(mg protein)–1, and was shown to exist as a 237-kDa homotetramer. In addition, PKC displayed hyperbolic substrate saturation kinetics and demonstrated pH-dependent modulation by several metabolite effectors including glutamine, glutamate, arginine, malate and 2-oxoglutarate. Most were inhibitors at pH 6.9, while activation by glutamine, asparagine and arginine and only weak inhibition for the rest were observed at pH 7.5. PEPCase was purified 33-fold to a final specific activity of 1 mol · min–1 · (mg protein)–1. The subunit and native Mr for the enzyme were shown to be 100 and 367 kDa, respectively, suggesting a homotetrameric native structure. PEPCase displayed a typical pH activity profile with an alkaline optimum and activity decreasing rapidly below pH 7.0. The enzyme was potently inhibited by malate, isocitrate, aspartate and glutamate at pH 7.0, whereas inhibition by these compounds was considerably diminished at pH 7.5. A model depicting the regulation of glycolytic carbon flow during amino-acid and sucrose import by castor cotyledons is proposed.Abbreviations IgG immunoglobulin G - I50a inhibitor concentration producing 50 inhibition of enzyme activity - PKC and PKpa cytosolic and plastidic isoenzymes of pyruvate kinase, respectively - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - 3-PGA 3-phosphoglycerate This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

20.
Yurchenko  Yu. V.  Khromov  I. S.  Budilov  A. V.  Deyev  S. M.  Sobolev  A. Yu. 《Molecular Biology》2003,37(6):841-848
The Meiothermus ruber alkaline phosphatase gene was cloned, expressed in Escherichia coli cells, and sequenced. The enzyme precursor, including the putative signal peptide, was shown to consist of 503 residues (deduced molecular mass 54,229 Da). The recombinant enzyme showed the maximal activity at 60–65°C, pH 11.0, K M = 0.055 mM with p-nitrophenyl phosphate. The enzyme proved to be moderately thermostable, retaining 50% activity after 6 h incubation at 60°C and being completely inactivated in 2 h at 80°C. In substrate specificity assays, the highest activity was observed with p-nitrophenyl phosphate and dATP. Vanadate, inorganic phosphate, and SDS were inhibitory, while thiol-reducing agents had virtually no effect. The enzyme activity strongly depended on exogenous Mg2+ and declined in the presence of EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号