首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
2.
Mammalian mitochondrial DNAs contain a conserved origin of light-strand replication that supports accurate initiation of DNA synthesis in vitro. This provides an opportunity to examine the sequence requirements for initiation through in vitro analysis of a series of deleted and mutagenized DNA templates. These assays use enzymes isolated from human mitochondria and single-stranded DNA templates containing deletions or substitutions in the known origin region. The data indicate that accurate and efficient light-strand replication in vitro requires the previously identified stem-loop structure located within a tRNA cluster. In addition, the template sequence 3'-GGCCG-5', located immediately adjacent to the stem, is necessary for efficient replication. This sequence, the complement of which encodes the 3' end of tRNACys, may be the site of transition from RNA primer synthesis to DNA synthesis. Surprisingly, substitutions within a region located in the loop of this origin do not reduce levels of replication.  相似文献   

3.
T W Wong  D A Clayton 《Cell》1985,42(3):951-958
Synthesis of human light-strand mitochondrial DNA was accomplished in vitro using DNA primase, DNA polymerase, and other accessory proteins isolated from human mitochondria. Replication begins with the synthesis of primer RNA on a T-rich sequence in the origin stem-loop structure of the template DNA and absolutely requires ATP. A transition from RNA synthesis to DNA synthesis occurs near the base of the stem-loop structure and a potential recognition site for signaling that transition has been identified. The start sites of the in vitro products were mapped at the nucleotide level and were found to be in excellent agreement with those of in vivo nascent light-strand DNA. Isolated human mitochondrial enzymes recognize and utilize the bovine, but not the mouse, origin of light-strand replication.  相似文献   

4.
5.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

6.
7.
8.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

9.
Based on solution hybridization using single-stranded probes, native mitochondrial DNA extracted from sea urchin eggs contains a displacement-loop (D-loop) of approximately 70-80 nt. This maps to the single extended unassigned sequence of the genome, between the genes for tRNA(thr) and tRNA(pro), which also appears to contain the origin of first-strand replication. The D-loop commences at or close to a site of supercoil-dependent S1 nuclease hypersensitivity, adjacent to a run of 20 consecutive C residues, terminates near to the boundary of tRNA(thr), and appears to be composed at least partly of RNA, based on the sensitivity of the assays to RNase H. These experiments imply that the mechanisms of replication initiation in sea urchin and vertebrate mtDNAs are very similar, and suggest that the developmental restriction on mtDNA synthesis in eggs and embryos is maintained at the level of D-loop extension.  相似文献   

10.
A complementation experiment was developed to identify the protein component that is essential for the in vitro replication of a cloned template containing a chloroplast DNA replication origin of Chlamydomonas reinhardtii. Using this method, we have identified a DNA primase activity that copurified with DNA polymerase from the crude protein mixture. The primase catalyzed the synthesis of short RNA primers on single-stranded DNA templates. Among the synthetic templates, the order of preference was poly(dA), poly(dT), and poly(dC). The primer size range for these templates was 11-18, 5-12, and 3-11 nucleotides, respectively. On a single-stranded template containing the chloroplast DNA replication origin, the primer length range reached 19 to 27 nucleotides, indicating a better processtivity. Several initiation sites were mapped on both strands of the cloned replication origin. Some preferential initiation sites were located on A tracks spaced at one helical turn apart within the bending locus. Primase improved the template specificity of the in vitro DNA replication system and enhanced the incorporation of radioactive dATP into the supercoiled template containing the core sequences of the chloroplast DNA replication origin.  相似文献   

11.
Bacterial primases are essential for DNA replication due to their role in polymerizing the formation of short RNA primers repeatedly on the lagging-strand template and at least once on the leading-strand template. The ability of recombinant Staphylococcus aureus DnaG primase to utilize different single-stranded DNA templates was tested using oligonucleotides of the sequence 5'-CAGA (CA)5 XYZ (CA)3-3', where XYZ represented the variable trinucleotide. These experiments demonstrated that S. aureus primase synthesized RNA primers predominately on templates containing 5'-d(CTA)-3' or TTA and to a much lesser degree on GTA-containing templates, in contrast to results seen with the Escherichia coli DnaG primase recognition sequence 5'-d(CTG)-3'. Primer synthesis was initiated complementarily to the middle nucleotide of the recognition sequence, while the third nucleotide, an adenosine, was required to support primer synthesis but was not copied into the RNA primer. The replicative helicases from both S. aureus and E. coli were tested for their ability to stimulate either S. aureus or E. coli primase. Results showed that each bacterial helicase could only stimulate the cognate bacterial primase. In addition, S. aureus helicase stimulated the production of full-length primers, whereas E. coli helicase increased the synthesis of only short RNA polymers. These studies identified important differences between E. coli and S. aureus related to DNA replication and suggest that each bacterial primase and helicase may have adapted unique properties optimized for replication.  相似文献   

12.
The major form of mouse L-cell mitochondrial DNA contains a small displacement loop at the replication origin, created by synthesis of a 550 to 670-nucleotide portion of the heavy strand. These short heavy-strand segments remain hydrogen-bonded to the parental light strand and are collectively termed 7 S mitochondrial DNA. The unique location of these 7 S mitochondrial DNAs at the heavy-strand origin suggests that they may function as primers in the synthesis of full-length heavy strands. Ribonucleotides have been detected at the 5′-end of some of these molecules, which are most likely remnants of primer RNAs. Using 5′-end labeling in vitro, we have determined that these ribonucleotides occur at several discrete positions along the nucleotide sequence of the origin region, which suggests that there may be variability in the precise initiation point of RNA priming or in the location of the switchover from RNA priming to DNA synthesis. The length of 5′-end RNA was estimated by alkali treatment of mitochondrial DNA prior to end labeling. A range of one to ten ribonucleotides was hydrolyzed from the 5′-end of some 7 S mitochondrial DNA strands. This is the first evidence of RNA priming at a eukaryotic cell DNA replication origin.  相似文献   

13.
Escherichia coli DnaG primase is a single-stranded DNA-dependent RNA polymerase. Primase catalyzes the synthesis of a short RNA primer to initiate DNA replication at the origin and to initiate Okazaki fragment synthesis for synthesis of the lagging strand. Primase activity is greatly stimulated through its interaction with DnaB helicase. Here we report a 96-well homogeneous scintillation proximity assay (SPA) for the study of DnaB-stimulated E. coli primase activity and the identification of E. coli primase inhibitors. The assay uses an adaptation of the general priming reaction by employing DnaG primase, DnaB helicase, and ribonucleotidetriphosphates (incorporation of [(3)H]CTP) for in vitro primer synthesis on single-stranded oligonucleotide and M13mp18 DNA templates. The primase product is captured by polyvinyl toluene-polyethyleneimine-coated SPA beads and quantified by counting by beta-scintography. In the absence of helicase as a cofactor, primer synthesis is reduced by 85%. The primase assay was used for screening libraries of compounds previously identified as possessing antimicrobial activities. Primase inhibitory compounds were then classified as direct primase inhibitors or mixed primase/helicase inhibitors by further evaluation in a specific assay for DnaB helicase activity. By this approach, specific primase inhibitors could be identified.  相似文献   

14.
DNA primases are responsible for the synthesis of the short RNA primers that are used by the replicative DNA polymerases to initiate DNA synthesis on the leading- and lagging-strand at the replication fork. In this study, we report the purification and biochemical characterization of a DNA primase (Sso DNA primase) from the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The Sso DNA primase is a heterodimer composed of two subunits of 36 kDa (small subunit) and 38 kDa (large subunit), which show sequence similarity to the eukaryotic DNA primase p60 and p50 subunits, respectively. The two polypeptides were co-expressed in Escherichia coli and purified as a heterodimeric complex, with a Stokes radius of about 39.2 Å and a 1:1 stoichiometric ratio among its subunits. The Sso DNA primase utilizes poly-pyrimidine single-stranded DNA templates with low efficiency for de novo synthesis of RNA primers, whereas its synthetic function is specifically activated by thymine-containing synthetic bubble structures that mimic early replication intermediates. Interestingly, the Sso DNA primase complex is endowed with a terminal nucleotidyl-tranferase activity, being able to incorporate nucleotides at the 3′ end of synthetic oligonucleotides in a non-templated manner.  相似文献   

15.
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves mitochondrial RNA from the origin of leading-strand DNA synthesis contained within the displacement-loop region. Bovine mitochondrial DNA maintains the typical gene content and order of mammalian mitochondrial DNAs but differs in the nature of sequence conservation within this displacement-loop regulatory region. This markedly different sequence arrangement raises the issue of the degree to which a bovine RNase MRP would reflect the physical and functional properties ascribed to the enzymes previously characterized from mouse and human. We find that bovine RNase MRP exists as a ribonucleoprotein, with an RNA component of 279 nucleotides that is homologous to that of mouse or human RNase MRP RNA. Characterization of the nuclear gene for bovine RNase MRP RNA showed conservation of sequence extending 5 of the RNase MRP RNA coding sequence, including the presence of a cis-acting element known to be important for the expression of some mitochondrial protein-coding nuclear genes. Bovine or mouse RNase MRP cleaves a standard mouse mitochondrial RNA substrate in the same manner; each also cleaves a bovine mitochondrial RNA substrate identically. Since bovine and mouse RNase MRPs process both bovine and mouse substrates, we conclude that the structural features of the mitochondrial RNA substrate required for enzymatic cleavage have been well conserved despite significant overall primary sequence divergence. Inspection of the bovine RNA substrate reveals conservation of only the most critical portion of the primary sequence as indicated by earlier studies with mouse and human RNase MRPs. Interestingly, a principal cleavage site in the bovine mitochondrial RNA substrate is downstream of the promoter located at the leading-strand mitochondrial DNA replication origin. Correspondence to: D.J. Dairaghi  相似文献   

16.
Template-directed arrest of mammalian mitochondrial DNA synthesis.   总被引:12,自引:1,他引:11       下载免费PDF全文
Mammalian mitochondrial DNA often contains a short DNA displacement loop at the heavy-strand origin of replication. This short nascent DNA molecule has been used to study site-specific termination of mitochondrial DNA synthesis in human and mouse cells. We examined D-loop strand termination in two distantly related artiodactyls, the pig and the cow. Porcine mitochondrial DNA was unique among mammals in that it contained only a single species of D-loop single-stranded DNA. Its 3' end mapped to a site 187 nucleotides from the 5' end of the proline tRNA gene. This site was 21 and 47 nucleotides 5' to two very similar sequences (5' ACATATPyATTAT 3') which are closely related to the human and mouse termination-associated sequences noted by Doda et al. (J. N. Doda, D. T. Wright, and D. A. Clayton, Proc. Nat. Acad. Sci. USA 78:616-6120, 1981). Bovine mitochondrial DNA contained three major D-loop DNA species whose 3' ends mapped to three different sites. These sites were not found in the porcine sequence. However, the bovine termination sites were located 60 to 64 base pairs 5' from sequences which were also very similar to the termination-associated sequences present in pigs and other mammals. These results firmly establish the concept that arrest of heavy-strand DNA synthesis is an event determined, at least in part, by template sequence. They also suggest that arrest is determined by sequences which are a considerable physical distance away from the actual termination site.  相似文献   

17.
Khopde S  Biswas EE  Biswas SB 《Biochemistry》2002,41(50):14820-14830
Primase is an essential DNA replication enzyme in Escherichia coli and responsible for primer synthesis during lagging strand DNA replication. Although the interaction of primase with single-stranded DNA plays an important role in primer RNA and Okazaki fragment synthesis, the mechanism of DNA binding and site selection for primer synthesis remains unknown. We have analyzed the energetics of DNA binding and the mechanism of site selection for the initiation of primer RNA synthesis on the lagging strand of the replication fork. Quantitative analysis of DNA binding by primase was carried out using a number of oligonucleotide sequences: oligo(dT)(25) and a 30 bp oligonucleotide derived from bacteriophage G4 origin (G4ori-wt). Primase bound both sequences with moderate affinity (K(d) = 1.2-1.4 x 10(-)(7) M); however, binding was stronger for G4ori-wt. G4ori-wt contained a CTG trinucleotide, which is a preferred site for initiation of primer synthesis. Analysis of DNA binding isotherms derived from primase binding to the oligonucleotide sequences by fluorescence anisotropy indicated that primase bound to DNA as a dimer, and this finding was further substantiated by electrophoretic mobility shift assays (EMSAs) and UV cross-linking of the primase-DNA complex. Dissection of the energetics involved in the primase-DNA interaction revealed a higher affinity of primase for DNA sequences containing the CTG triplet. This sequence preference of primase may likely be responsible for the initiation of primer synthesis in the CTG triplet sites in the E. coli lagging strand as well as in the origin of replication of bacteriophage G4.  相似文献   

18.
BACKGROUND: DNA primases catalyse the synthesis of the short RNA primers that are required for DNA replication by DNA polymerases. Primases comprise three functional domains: a zinc-binding domain that is responsible for template recognition, a polymerase domain, and a domain that interacts with the replicative helicase, DnaB. RESULTS: We present the crystal structure of the zinc-binding domain of DNA primase from Bacillus stearothermophilus, determined at 1.7 A resolution. This is the first high-resolution structural information about any DNA primase. A model is discussed for the interaction of this domain with the single-stranded DNA template. CONCLUSIONS: The structure of the DNA primase zinc-binding domain confirms that the protein belongs to the zinc ribbon subfamily. Structural comparison with other nucleic acid binding proteins suggests that the beta sheet of primase is likely to be the DNA-binding surface, with conserved residues on this surface being involved in the binding and recognition of DNA.  相似文献   

19.
20.
DNA primase catalyzes de novo synthesis of a short RNA primer that is further extended by replicative DNA polymerases during initiation of DNA replication. The eukaryotic primase is a heterodimeric enzyme comprising a catalytic subunit Pri1 and a regulatory subunit Pri2. Pri2 is responsible for facilitating optimal RNA primer synthesis by Pri1 and mediating interaction between Pri1 and DNA polymerase α for transition from RNA synthesis to DNA elongation. All eukaryotic Pri2 proteins contain a conserved C-terminal iron-sulfur (Fe-S) cluster-binding domain that is critical for primase catalytic activity in vitro. Here we show that mutations at conserved cysteine ligands for the Pri2 Fe-S cluster markedly decrease the protein stability, thereby causing S phase arrest at the restrictive temperature. Furthermore, Pri2 cysteine mutants are defective in loading of the entire DNA pol α-primase complex onto early replication origins resulting in defective initiation. Importantly, assembly of the Fe-S cluster in Pri2 is impaired not only by mutations at the conserved cysteine ligands but also by increased oxidative stress in the sod1Δ mutant lacking the Cu/Zn superoxide dismutase. Together these findings highlight the critical role of Pri2’s Fe-S cluster domain in replication initiation in vivo and suggest a molecular basis for how DNA replication can be influenced by changes in cellular redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号