首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysregulation of the balance between cell proliferation and cell death is a central feature of malignances. Death-associated protein kinase 3 (DAPK3) regulates programmed cell death including apoptosis and autophagy. Our previous study showed that DAPK3 downregulation was detected in more than half of gastric cancers (GCs), which was related to tumor invasion, metastasis, and poor prognosis. However, the precise molecular mechanism underlying DAPK3-mediated tumor suppression remains unclear. Here, we showed that the tumor suppressive function of DAPK3 was dependent on autophagy process. Mass spectrometry, in vitro kinase assay, and immunoprecipitation revealed that DAPK3 increased ULK1 activity by direct ULK1 phosphorylation at Ser556. ULK1 phosphorylation by DAPK3 facilitates the ULK1 complex formation, the VPS34 complex activation, and autophagy induction upon starvation. The kinase activity of DAPK3 and ULK1 Ser556 phosphorylation were required for DAPK3-modulated tumor suppression. The coordinate expression of DAPK3 with ULK1 Ser556 phosphorylation was confirmed in clinical GC samples, and this co-expression was correlated with favorable survival outcomes in patients. Collectively, these findings indicate that the tumor-suppressor roles of DAPK3 in GC are associated with autophagy and that DAPK3 is a novel autophagy regulator, which can directly phosphorylate ULK1 and activate ULK1. Thus, DAPK3 might be a promising prognostic autophagy-associated marker.Subject terms: Tumour-suppressor proteins, Macroautophagy  相似文献   

2.
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk-/- mice are protected from kidney damage caused by injection of the ER stress-inducer tunicamycin. Likewise, the cell death response to ER stress-inducers is reduced in DAPk-/- primary fibroblasts. Both caspase activation and autophagy induction, events that are activated by ER stress and precede cell death, are significantly attenuated in the DAPk null cells. Notably, in this cellular setting, autophagy serves as a second cell killing mechanism that acts in concert with apoptosis, as the depletion of Atg5 or Beclin1 from fibroblasts significantly protected from ER stress-induced death when combined with caspase-3 depletion. We further show that ER stress promotes the catalytic activity of DAPk by causing dephosphorylation of an inhibitory autophosphorylation on Ser(308) by a PP2A-like phosphatase. Thus, DAPk constitutes a critical integration point in ER stress signaling, transmitting these signals into two distinct directions, caspase activation and autophagy, leading to cell death.  相似文献   

3.
Phosphorylation at Thr308 and Ser473 is known to activate Akt, a major kinase in mammalian cells. Once activated to turn on downstream signaling pathways, Akt returns to an inactive pool via PP2A-mediated dephosphorylation. We show here that Thr308 and Ser473 phosphorylations prompt Akt to enter the CHIP-mediated ubiquitin-proteasome pathway. Mutation at either Thr308 or Ser473 dampened its ability to bind to the U-box E3 ligase CHIP (C-terminal Hsp70 -interacting protein), and the Akt mutants revealed decreased rate of ubiquitination by CHIP. Our study unveils that the well-known phosphorylations responsible for Akt activation turn out to transduce recognition signals for Akt-CHIP binding and ensuing degradation.  相似文献   

4.
Jiang Q  Wang Y  Li T  Shi K  Li Z  Ma Y  Li F  Luo H  Yang Y  Xu C 《Molecular biology of the cell》2011,22(8):1167-1180
Autophagy can protect cells while also contributing to cell damage, but the precise interplay between apoptosis and autophagy and the contribution of autophagy to cell death are still not clear. Previous studies have shown that supranutritional doses of sodium selenite promote apoptosis in human leukemia NB4 cells. Here, we report that selenite treatment triggers opposite patterns of autophagy in the NB4, HL60, and Jurkat leukemia cell lines during apoptosis and provide evidence that the suppressive effect of selenite on autophagy in NB4 cells is due to the decreased expression of the chaperone protein Hsp90 (heat shock protein 90), suggesting a novel regulatory function of Hsp90 in apoptosis and autophagy. Excessive or insufficient expression indicates that Hsp90 protects NB4 cells from selenite-induced apoptosis, and selenite-induced decreases in the expression of Hsp90, especially in NB4 cells, inhibit the activities of the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear translocation and inactivation of NF-κB and the subsequent weak binding of the becn1 promoter, which facilitates the transition from autophagy to apoptosis. Taken together, our observations provide novel insights into the mechanisms underlying the balance between apoptosis and autophagy, and we also identified Hsp90-NF-κB-Beclin1 as a potential biological pathway for signaling the switch from autophagy to apoptosis in selenite-treated NB4 cells.  相似文献   

5.
The neuroprotective activity of pyruvate has been confirmed in previous in vivo and in vitro studies. Here, we report a novel mechanism that pyruvate prevents SH-SY5Y cells from glutamate excitotoxicity by regulating death-associated protein kinase 1 (DAPK1) protein complex. Our results showed pyruvate regulated DAPK1 protein complex to protect cells by two ways. First, pyruvate induced the dissociation of DAPK1 with NMDA receptors. The disruption of the DAPK1-NMDA receptors complex resulted in a decrease in NMDA receptors phosphorylation. Then the glutamate-stimulated Ca2+ influx was inhibited and intracellular Ca2+ overload was alleviated, which blocked the release of cytochrome c and cell death. In addition, increased Bcl-xL induced by pyruvate regulated Bax/Bak dependent death by inhibiting the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol. As a result, the cytochrome c-initiated caspase cascade, including caspase-3 and caspase-9, was inhibited. Second, pyruvate promoted the association between DAPK1 and Beclin-1, which resulted in autophagy activation. The autophagy inhibitor 3-methyladenine reversed the protection afforded by pyruvate. Furthermore, the attenuation of mitochondrial damage induced by pyruvate was partly reduced by 3-methyladenine. This suggested autophagy mediated pyruvate protection by preventing mitochondrial damage. Taken together, pyruvate protects cells from glutamate excitotoxicity by regulating DAPK1 complexes, both through dissociation of DAPK1 from NMDA receptors and association of DAPK1 with Beclin-1. They go forward to protect cells by attenuating Ca2+ overload and activating autophagy. Finally, a convergence of the two ways protects mitochondria from glutamate excitotoxicity, which leads to cell survival.  相似文献   

6.
The viability of vertebrate cells depends on a complex signaling interplay between survival factors and cell-death effectors. Subtle changes in the equilibrium between these regulators can result in abnormal cell proliferation or cell death, leading to various pathological manifestations. Death-associated protein kinase (DAPK) is a multidomain calcium/calmodulin (CaM)-dependent Ser/Thr protein kinase with an important role in apoptosis regulation and tumor suppression. The molecular signaling mechanisms regulating this kinase, however, remain unclear. Here, we show that DAPK is phosphorylated upon activation of the Ras-extracellular signal-regulated kinase (ERK) pathway. This correlates with the suppression of the apoptotic activity of DAPK. We demonstrate that DAPK is a novel target of p90 ribosomal S6 kinases (RSK) 1 and 2, downstream effectors of ERK1/2. Using mass spectrometry, we identified Ser-289 as a novel phosphorylation site in DAPK, which is regulated by RSK. Mutation of Ser-289 to alanine results in a DAPK mutant with enhanced apoptotic activity, whereas the phosphomimetic mutation (Ser289Glu) attenuates its apoptotic activity. Our results suggest that RSK-mediated phosphorylation of DAPK is a unique mechanism for suppressing the proapoptotic function of this death kinase in healthy cells as well as Ras/Raf-transformed cells.  相似文献   

7.
The repulsive guidance molecule (RGM) is a membrane-bound protein that has diverse functions in the developing central nervous system. Identification of neogenin as a receptor for RGM provided evidence of its cell death-inducing activity in the absence of RGM. Here, we show that the serine/threonine kinase death-associated protein kinase (DAPK) is involved in the signal transduction of neogenin. Neogenin interacts with DAPK and reduces DAPK autophosphorylation on Ser308 in vitro. Neogenin-induced cell death is abolished in the presence of RGM or by blocking DAPK. Although neogenin overexpression or RGM downregulation in the chick neural tube in vivo induces apoptosis, coexpression of the dominant-negative mutant or small-interference RNA of DAPK attenuates this proapoptotic activity. Thus, RGM/neogenin regulates cell fate by controlling the DAPK activity.  相似文献   

8.
DAPK1 and DAPK2 are calmodulin (CaM)-regulated protein kinases that share a high degree of homology in their catalytic and CaM regulatory domains. Both kinases function as tumor suppressors, and both have been implicated in autophagy regulation. Over the years, common regulatory mechanisms for the two kinases as well as kinase-specific ones have been identified. In a recent work, we revealed that DAPK2 is phosphorylated on Ser289 by the metabolic sensor AMPK, and that this phosphorylation enhances DAPK2 catalytic activity. Notably, Ser289 is conserved between DAPK1 and DAPK2, and was previously found to be phosphorylated in DAPK1 by RSK. Intriguingly, Ser289 phosphorylation was conversely reported to inhibit the pro-apoptotic activity of DAPK1 in cells. However, as the direct effect of this phosphorylation on DAPK1 catalytic activity was not tested, indirect effects were not excluded. Here, we compared Ser289 phosphorylation of the two kinases in the same cells and found that the intracellular signaling pathways that lead to Ser289 phosphorylation are mutually-exclusive and different for each kinase. In addition, we found that Ser289 phosphorylation in fact enhances DAPK1 catalytic activity, similar to the effect on DAPK2. Thus, Ser289 phosphorylation activates both DAPK1 and DAPK2, but in response to different intracellular signaling pathways.  相似文献   

9.
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.  相似文献   

10.
Death-associated protein kinase 2 (DAPK2) is a Ca2+/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein''s subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.  相似文献   

11.
Death-associated protein kinase (DAPK) has been found associated with HSP90, and inhibition of HSP90 with 17-alkylamino-17-demethoxygeldanamycin reduced expression of DAPK. These results were extended to determine whether the degradation of DAPK in the absence of HSP90 activity is dependent on the ubiquitin-proteasome pathway. Our results show that treatment of cells with geldanamycin (GA) leads to degradation of DAPK, and this degradation is attenuated by the proteasome inhibitor, lactacystin. GA-induced DAPK degradation is also dependent on phosphorylation of DAPK at Ser(308), and the cellular levels of phospho(Ser(308))-DAPK dramatically increase in response to GA treatment. Expression of two distinct ubiquitin E3 ligases, carboxyl terminus of HSC70-interacting protein (CHIP) or DIP1/Mib1, enhanced DAPK degradation, and conversely, short interfering RNA depletion of either CHIP or DIP1/Mib1 attenuated DAPK degradation. In vitro ubiquitination assays confirmed that DAPK is targeted for ubiquitination by both CHIP and DIP. Consistent with these results, DAPK is found in two distinct immune complexes, one containing HSP90 and CHIP and a second complex containing only DIP1/Mib. Collectively, these results indicate that strict modulation of DAPK activities is critical for regulation of apoptosis and cellular homeostasis.  相似文献   

12.
Autophagy, an evolutionarily conserved process, has functions both in cytoprotective and programmed cell death mechanisms. Beclin 1, an essential autophagic protein, was recently identified as a BH3‐domain‐only protein that binds to Bcl‐2 anti‐apoptotic family members. The dissociation of beclin 1 from its Bcl‐2 inhibitors is essential for its autophagic activity, and therefore should be tightly controlled. Here, we show that death‐associated protein kinase (DAPK) regulates this process. The activated form of DAPK triggers autophagy in a beclin‐1‐dependent manner. DAPK phosphorylates beclin 1 on Thr 119 located at a crucial position within its BH3 domain, and thus promotes the dissociation of beclin 1 from Bcl‐XL and the induction of autophagy. These results reveal a substrate for DAPK that acts as one of the core proteins of the autophagic machinery, and they provide a new phosphorylation‐based mechanism that reduces the interaction of beclin 1 with its inhibitors to activate the autophagic machinery.  相似文献   

13.
The histone deacetylase inhibitor (HDACi) LBH589 has been verified as an effective anticancer agent. The identification and characterization of new targets for LBH589 action would further enhance our understanding of the molecular mechanisms involved in HDACi therapy. The role of the tumor suppressor death-associated protein kinase (DAPK) in LBH589-induced cytotoxicity has not been investigated to date. Stable DAPK knockdown (shRNA) and DAPK overexpressing (DAPK+++) cell lines were generated from HCT116 wildtype colon cancer cells. LBH589 inhibited cell proliferation, reduced the long-term survival, and up-regulated and activated DAPK in colorectal cancer cells. Moreover, LBH589 significantly suppressed the growth of colon tumor xenografts and in accordance with the in vitro studies, increased DAPK levels were detected immunohistochemically. LBH589 induced a DAPK-dependent autophagy as assessed by punctuate accumulation of LC3-II, the formation of acidic vesicular organelles, and degradation of p62 protein. LBH589-induced autophagy seems to be predominantly caused by DAPK protein interactions than by its kinase activity. Caspase inhibitor zVAD increased autophagosome formation, decreased the cleavage of caspase 3 and PARP but didn’t rescue the cells from LBH589-induced cell death in crystal violet staining suggesting both caspase-dependent as well as caspase-independent apoptosis pathways. Pre-treatment with the autophagy inhibitor Bafilomycin A1 caused caspase 3-mediated apoptosis in a DAPK-dependent manner. Altogether our data suggest that DAPK induces autophagy in response to HDACi-treatment. In autophagy deficient cells, DAPK plays an essential role in committing cells to HDACi-induced apoptosis.  相似文献   

14.
Arsenic compounds or arsenicals are well-known toxic and carcinogenic agents. The toxic effects of arsenic that are of most concern to humans are those that occur from chronic, low-level exposure, and are associated with various human malignancies, including skin, lung and bladder cancers. In addition, arsenic could induce cell death, including apoptosis or autophagy in malignant cells. Previously, we have demonstrated that arsenite can induce autophagy and death-associated protein kinase (DAPK) promoter hypermethylation in the SV-40 immortalized human uroepithelial cell line (SV-HUC-1). However, the underlying mechanism of arsenite-induced autophagy is still unclear. In the present study, we demonstrate that arsenite can activate the extracellular signaling-regulated protein kinase 1/2 (ERK1/2) signaling pathway after treatment in SV-HUC-1 cells by using immunocytochemistry and Western blotting. In addition, our results also show an increase of autophagosomes was produced in arsenite-treated SV-HUC-1 cells by using electron microscopy. We found that, by incrementally increasing the dosages, microtubule-associated protein light chain 3B (LC3B) and Beclin-1 are important regulators for the formation of autophagosomes, in a dose-dependent manner. When the cells were pretreated with inhibitors 5-aza-CdR or U0126 for 24 h, the effect of arsenite on ERK1/2, LC3B, Beclin-1 and DAPK proteins expression is suppressed. Furthermore, our results support the notion that arsenite can induce the ERK1/2 signaling pathway to stimulate autophagy and DAPK promoter hypermethylation in human uroepithelial SV-HUC-1 cells. These findings may contribute to a better understanding of the carcinogenesis of arsenite.  相似文献   

15.
Uncontrolled overactivation of autophagy may lead to autophagic cell death, suppression of which is a pro-survival strategy for tumors. However, mechanisms involving key regulators in modulating autophagic cell death remain poorly defined. Here, we report a novel long noncoding RNA, p53 upregulated regulator of p53 levels (PURPL), functions as an oncogene to promote cell proliferation, colony formation, migration, invasiveness, and inhibits cell death in melanoma cells. Mechanistic studies showed that PURPL promoted mTOR-mediated ULK1 phosphorylation at Ser757 by physical interacting with mTOR and ULK1 to constrain autophagic response to avoid cell death. Loss of PURPL led to AMPK-mediated phosphorylation of ULK1 at Ser555 and Ser317 to over-activate autophagy and induce autophagic cell death. Our results identify PURPL as a key regulator to modulate the activity of autophagy initiation factor ULK1 to repress autophagic cell death in melanoma and may represent a potential intervention target for melanoma therapy.Subject terms: Oncogenes, Macroautophagy, Melanoma  相似文献   

16.
Death‐associated protein kinase (DAPK) was identified as a mediator of interferon (IFN)‐induced cell death. How IFN controls DAPK activation remains largely unknown. Here, we identify the BTB–Kelch protein KLHL20 as a negative regulator of DAPK. KLHL20 binds DAPK and Cullin 3 (Cul3) via its Kelch‐repeat domain and BTB domain, respectively. The KLHL20–Cul3–ROC1 E3 ligase complex promotes DAPK polyubiquitination, thereby inducing the proteasomal degradation of DAPK. Accordingly, depletion of KLHL20 diminishes DAPK ubiquitination and degradation. The KLHL20‐mediated DAPK ubiquitination is suppressed in cells receiving IFN‐α or IFN‐γ, which induces an enrichment/sequestration of KLHL20 in the PML nuclear bodies, thereby separating KLHL20 from DAPK. Consequently, IFN triggers the stabilization of DAPK. This mechanism of DAPK stabilization is crucial for determining IFN responsiveness of tumor cells and contributes to IFN‐induced autophagy. This study identifies KLHL20–Cul3–ROC1 as an E3 ligase for DAPK ubiquitination and reveals a regulatory mechanism of DAPK, through blocking its accessibility to this E3 ligase, in IFN‐induced apoptotic and autophagic death. Our findings may be relevant to the problem of IFN resistance in cancer therapy.  相似文献   

17.
《Autophagy》2013,9(2):208-219
Endoplasmic reticulum (ER) stress induces both autophagy and apoptosis yet the molecular mechanisms and pathways underlying the regulation of these two cellular processes in cells undergoing ER stress remain less clear. We report here that eukaryotic elongation factor-2 kinase (EEF2K) is a critical controller of the ER stress-induced autophagy and apoptosis in tumor cells. DDIT4, a stress-induced protein, was required for transducing the signal for activation of EEF2K under ER stress. We further showed that phosphorylation of EEF2K at Ser398 was essential for induction of autophagy, while phosphorylation of the kinase at Ser366 and Ser78 exerted an inhibitory effect on autophagy. Suppression of the ER stress-activated autophagy via silencing of EEF2K aggravated ER stress and promoted apoptotic cell death in tumor cells. Moreover, inhibiting EEF2K by either RNAi or NH125, a small molecule inhibitor of the enzyme, rendered tumor cells more sensitive to curcumin and velcade, two anticancer agents that possess ER stress-inducing action. Our study indicated that the DDIT4-EEF2K pathway was essential for inducing autophagy and for determining the fate of tumor cells under ER stress, and suggested that inhibiting the EEF2K-mediated autophagy can deteriorate ER stress and lead to a greater apoptotic response, thereby potentiating the efficacy of the ER stress-inducing agents against cancer.  相似文献   

18.
Stevens C  Hupp TR 《Autophagy》2008,4(4):531-533
DAPK represents a relatively unique enzyme in the protein kinase superfamily whose major biological functions are linked to both autophagy and signal-mediated apoptosis. However, genetic studies have not yet uncovered how DAPK integrates into the core autophagy-related (Atg) machinery since DAPK is not present in a genetically tractable eukaryotic cell such as yeast. Furthermore, there have been no definitive DAPK binding proteins identified in metazoan systems that play a direct role in cooperating with DAPK in autophagy. We have utilized a growing concept in systems biology that invokes linear peptide-motifs as a fundamental mechanism driving protein-protein interactions and as a key switch underlying the dynamics of a signal transduction pathway. By using peptide combinatorial libraries as an assay that reflects the diversity of the linear peptide motif repertoire in the mammalian proteome, we identified microtubule-associated protein 1B (MAP1B) as a novel DAPK interacting protein that stimulates DAPK-dependent membrane blebbing and autophagy. MAP1B has previously been shown to form a functional interaction with the autophagosomal protein Atg8 (LC3). Together these studies define a genetic interaction between DAPK-MAP1B in the regulation of autophagy that may have particular relevance to cellular signalling pathways that regulate cell survival or cell death under distinct environmental stresses.  相似文献   

19.
DAP-kinase (DAPK) is a Ca2+/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK’s cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK’s catalytic activity. For example, by virtue of protein–protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.  相似文献   

20.
cGMP-dependent protein kinase-I (cGK-I) induces apoptosis in various cancer cell lines. However, the signaling mechanisms involved remain unknown. Using protein microarray technology, we identified a novel cGK substrate, death-associated protein kinase 2 (DAPK2), which is a Ca(2+)/calmodulin-regulated serine/threonine kinase. cGK-I phosphorylated DAPK2 at Ser(299), Ser(367) and Ser(368). Interestingly, a phospho-mimic mutant, DAPK2 S299D, significantly enhanced its kinase activity in the absence of Ca(2+)/calmodulin, while a S367D/S368D mutant did not. Overexpression of DAPK2 S299D also resulted in a twofold increase in apoptosis of human breast cancer MCF-7 cells as compared with wild-type DAPK2. These results suggest that DAPK2 is one of the targets of cGK-I in apoptosis induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号