首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In recent years, salt marsh restoration projects have focused upon restoring hydrology through culvert enlargement to return functional values lost due to reduced tidal flow. To evaluate culvert effects on upstream nekton assemblages, fyke nets were set upstream of tidally restricted creeks, creeks recently restored with larger culverts, and paired reference creeks in New Hampshire and Maine, U.S.A. Subtidal habitats created or enlarged by scour were found immediately upstream of undersized culverts. All marshes supported similar assemblages and densities of fish, suggesting that marshes upstream of moderately restrictive culverts provide suitable habitat to support fish communities. However, densities of Crangon septemspinosa (sand shrimp) were significantly reduced upstream of culverts. A mark–recapture study was conducted in tidally restricted, restored, and reference marsh creeks to evaluate culvert effects on the movement of Fundulus heteroclitus (mummichog), the numerically dominant fish species in New England salt marshes. Recapture data indicated that small culvert size and consequently increased water velocity significantly decreased fish passage rates. We infer that upstream subtidal habitats and greater water velocities due to undersized culverts decreased nekton movements between upstream and downstream areas, resulting in segregated nekton populations. Restoration of salt marsh hydrology by the installation of adequately sized culverts will support increased fish access to marsh habitats and nekton‐mediated export of marsh‐derived production to coastal waters.  相似文献   

2.
Habitat fragmentation and its genetic consequences are a critically important issue in evaluating the evolutionary penalties of human habitat modification. Here, we examine the genetic structure and diversity in naturally subdivided and artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi), a small fish restricted to discrete coastal lagoons and estuaries in California, USA. We use five naturally fragmented coastal populations from a 300‐ km spatial scale as a standard to assess migration and drift relative to eight artificially fragmented bay populations from a 30‐ km spatial scale. Using nine microsatellite loci in 621 individuals, and a 522‐base fragment of mitochondrial DNA control region from 103 individuals, we found striking differences in the relative influences of migration and drift on genetic variation at these two scales. Overall, the artificially fragmented populations exhibited a consistent pattern of higher genetic differentiation and significantly lower genetic diversity relative to the naturally fragmented populations. Thus, even in a species characterized by habitat isolation and subdivision, further artificial fragmentation appears to result in substantial population genetic consequences and may not be sustainable.  相似文献   

3.

Preserving the genetic diversity of endangered species is fundamental to their conservation and requires an understanding of genetic structure. In turn, identification of landscape features that impede gene flow can facilitate management to mitigate such obstacles and help with identifying isolated populations. We conducted a landscape genetic study of the endangered salt marsh harvest mouse (Reithrodontomys raviventris), a species endemic to the coastal marshes of the San Francisco Estuary of California. We collected and genotyped?>?500 samples from across the marshes of Suisun Bay which contain the largest remaining tracts of habitat for the species. Cluster analyses and a population tree identified three geographically discrete populations. Next, we conducted landscape genetic analyses at two scales (the entire study area and across the Northern Marshes) where we tested 65 univariate models of landscape features and used the best supported to test multivariable analyses. Our analysis of the entire study area indicated that open water and elevation (>?2 m) constrained gene flow. Analysis of the Northern Marshes, where low elevation marsh habitat is more continuous, indicated that geographic distance was the only significant predictor of genetic distance at this scale. The identification of a large, connected population across Northern Marshes achieves a number of recovery targets for this stronghold of the species. The identification of landscape features that act as barriers to dispersal enables the identification of isolated and vulnerable populations more broadly across the species range, thus aiding conservation prioritization.

  相似文献   

4.
Several environmental factors influence the distribution of plants in coastal salt marshes. Substrate salinity is among the major factors preventing several species from establishing near the water line. However, interspecific competition for light and nutrients is often significant in determining the upper limit of plants along the salt marsh gradient. In this study, we tested the effects of substrate salinity and light and nutrient availability on the performance of the annual Aster laurentianus (Asteraceae), an endangered species of eastern Canadian salt marshes. This species is typically found in a narrow band along the shores of shallow lagoons, cornered between the high water line and the dense, herbaceous community of the upper marsh. Low light availability was the most significant factor limiting plant performance. Salinity had little effect on A. laurentianus as, unexpectedly, did nutrient availability. Yet plants were able to absorb nutrients when these were made more available. Luxury consumption, the uptake of excess nutrients, may make sense for this annual plant because the habitat in which it grows is subject to frequent disturbances (e.g., sand accretion and salinity pulses) that may kill canopy species and release suppressed A. laurentianus individuals. These results suggest that interspecific competition for light may play a significant role in restraining A. laurentianus from the upper part of salt marshes. Luxury consumption may help the species to opportunistically take advantage of release from taller species, particularly towards the upper edge of the salt marsh gradient.  相似文献   

5.
Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non‐linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11‐year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance‐tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.  相似文献   

6.
Environmental DNA (eDNA) monitoring approaches promise to greatly improve detection of rare, endangered and invasive species in comparison with traditional field approaches. Herein, eDNA approaches and traditional seining methods were applied at 29 research locations to compare method‐specific estimates of detection and occupancy probabilities for endangered tidewater goby (Eucyclogobius newberryi). At each location, multiple paired seine hauls and water samples for eDNA analysis were taken, ranging from two to 23 samples per site, depending upon habitat size. Analysis using a multimethod occupancy modelling framework indicated that the probability of detection using eDNA was nearly double (0.74) the rate of detection for seining (0.39). The higher detection rates afforded by eDNA allowed determination of tidewater goby occupancy at two locations where they have not been previously detected and at one location considered to be locally extirpated. Additionally, eDNA concentration was positively related to tidewater goby catch per unit effort, suggesting eDNA could potentially be used as a proxy for local tidewater goby abundance. Compared to traditional field sampling, eDNA provided improved occupancy parameter estimates and can be applied to increase management efficiency across a broad spatial range and within a diversity of habitats.  相似文献   

7.
We summarized data from eight quantitative fish surveys conducted in southern Florida to evaluate the distribution and relative abundance of introduced fishes across a variety of habitats. These surveys encompassed marsh and canal habitats throughout most of the Everglades region, including the mangrove fringe of Florida Bay. Two studies provided systematically collected density information over a 20-year period, and documented the first local appearance of four introduced fishes based on their repeated absence in prior surveys. Those species displayed a pattern of rapid population growth followed by decline, then persistence at lower densities. Estuarine areas in the southern Everglades, characterized by natural tidal creeks surrounded by mangrove-dominated marshes, and canals held the largest introduced-fish populations. Introduced fishes were also common, at times exceeding 50% of the fish community, in solution holes that serve as dry-season refuges in short-hydroperiod rockland habitats of the eastern Everglades. Wet prairies and alligator ponds distant from canals generally held few individuals of introduced fishes. These patterns suggest that the introduced fishes in southern Florida at present may not be well-adapted to persist in freshwater marshes of the Everglades, possibly because of an interaction of periodic cold-temperature stress and hydrologic fluctuation. Our analyses indicated low densities of these fishes in central or northern Everglades wet-prairie communities, and, in the absence of experimental data, little evidence of biotic effects in this spatially extensive habitat. There is no guarantee that this condition will be maintained, especially under the cumulative effects of future invasions or environmental change.  相似文献   

8.
Fish assemblages across a complex,tropical freshwater/marine ecotone   总被引:2,自引:0,他引:2  
Synopsis Riverine fish assemblages in the temperate zone generally show strong longitudinal patterns of faunal turnover and increases in species richness with increasing stream order. We examined the composition and structure of tropical fish assemblages across a complex freshwater/marine ecotone in Tortuguero National Park on the Caribbean coast of Central America. Species turnover was high between four characteristic habitats that largely corresponded with a longitudinal gradient of stream order over distances of less than 30 km. Suites of common fish species characterized each habitat: creeks, rivers, lagoons, and the sea. In addition to the habitat endemics, several species spanned two habitat types, but only three species were collected in more than two habitats. Multivariate gradient analysis of fish assemblages reflected a gradient of habitats that to some extent corresponded to fluvial distances. Due to the unusual configuration of coastal lagoons lying parallel to the coast, the ordination gradient showed little correlation with linear distance to the coast. Environmental variables related to habitat size and salinity showed greatest correspondence with the fish assemblage ordination gradient. Invertebrate-feeding fishes were the predominant trophic group in 15 of 16 fish assemblages, and inland creek sites contained a greater proportion of herbivores and omnivores than other sites. The relative fraction of herbivorous and detritivorous fishes showed a monotonic decline along the longitudinal habitat gradient from inland to coast. Patterns of species composition and richness at Tortuguero Park appeared to agree well with earlier models of factors influencing temperate zone stream fishes. Headwaters have low aquatic primary productivity and contain small colonizing fish species subject to large fluctuations in local densities and intermittent competition. Lagoons contain both large and small species, the latter being restricted largely to shallow edge habitats by predation. Lagoons exhibit more lentic environmental conditions, experience relatively fewer periodic disturbances than headwaters, and their assemblages are inferred to be under relatively greater influence of biotic factors. Fish assemblages of rivers and caños (swampy side channels and braids) appear to be under less abiotic control than headwaters and influenced less by biotic factors than lagoons.  相似文献   

9.
10.
The gobiid assemblage of the Venice Lagoon shallow waters was investigated by means of a semi‐quantitative standardized sampling (using a small beach seine), stratified into five main types of shallow subtidal habitats and conducted on a seasonal basis during 1 year. The degree of overlap in resource utilization among six coexisting goby species was assessed, along both the time axis, by analysing the seasonal variation in abundance and reproductive status (as revealed by the gonado‐somatic index) and the habitat axis, by comparing species abundance across different habitat types and controlling for the effects of some abiotic factors. Smaller species, and especially the marbled goby Pomatoschistus marmoratus , dominated the local assemblage. Although the cycle of shallow water colonization and seasonal variation in total abundance were basically similar, species showed differences in timing of reproduction and recruitment, as well as in habitat preference. The larger species belonging to the genera Gobius and Zosterisessor tended to overlap their habitat use, being more abundant in seagrass habitats than in the unvegetated habitats, whereas the smaller species belonging to the genera Knipowitschia and Pomatoschistus avoided seagrasses, preferring in most cases mud flats and salt marsh creeks. Within these two groups of species some further slight differences in species habitat preference, relationship with abiotic factors and reproductive ecology could be detected. Results are discussed in the light of both ecological mechanisms underlying coexistence of closely related species and the current knowledge of the phylogeny of Mediterranean gobies.  相似文献   

11.
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking.  相似文献   

12.
As human development in coastal areas increases, the role of anthropogenically-created habitats in the life history of marine organisms is becoming increasingly important. We examined the diet of age-0 tarpon, Megalops atlanticus, in and around man-made mosquito control impoundments along the Indian River Lagoon in east-central Florida, with a particular focus on identifying dietary patterns associated with tarpon size and nursery habitat type (i.e., between perimeter pool habitats in established impoundments and newly-created restoration marsh habitats). Age-0 tarpon were found to consume a wide variety of prey organisms, and exhibited considerable dietary variation among study sites. Smaller juvenile tarpon consumed a limited number of small prey taxa, while larger individuals fed on a greater range of prey taxa and sizes. Overall, copepods and fishes were the dominant prey items; however, the consumption of these organisms varied considerably among size classes and sites. There was no clear difference in tarpon diet between the two types of habitat we examined. The ability of juvenile tarpon to utilize such a diverse range of prey organisms may allow populations to inhabit a variety of habitats, including man-made marshes. When natural systems have been degraded or destroyed, human-altered habitats can assume a nursery role for the species.  相似文献   

13.
Fire has long been recognised as a natural force in structuring Northern Hemisphere salt marshes, yet little is known about the impact of fire on molluscs and native vegetation dynamics of Southern Hemisphere coastal salt marshes. Following a fire at Ash Island, Hunter River New South Wales, Australia in the summer 2012, we assessed patterns of recovery through time of gastropod populations and resident salt marsh vegetation including biomass for three keystone native plant species, Native Rush (Juncus kraussii Hochst.), a chenopod (Sarcocornia quinqueflora Bunge ex Ungen‐Sternberg A.J. Scott), Salt Couch (Sporobolus virginicus, L. Kunth) and the invasive Spiny Rush (Juncus acutus). In temperate east‐coast Australian salt marshes, Spiny Rush is displacing native salt marsh vegetation. After twelve months, the biomass of Native Rush recovered to similar pre‐burn levels. While fire affected the abundance, richness and composition of the gastropod assemblage differences were also largely driven by spatial variability. Gastropod assemblages associated with two of the higher elevation native species (Native Rush and Salt Couch) were impacted the most by fire. Greater abundance (between 1 and 5 orders of magnitude difference in abundance) and richness of gastropods were found in unburnt compared with burnt Native Rush and Salt Couch vegetation, while more gastropods were found in Spiny Rush in one site. Species prevalent in burnt vegetation included larger species of gastropods Ophicardelus ornatus (Ferussac, 1821) and Phallomedusa solida (Martens, 1878) with an unexpected spike in number of the smaller gastropod Tatea huonensis (Tenison‐Woods, 1876) in the spiny rush at one site only. In salt marsh habitats, many gastropods have planktonic larval dispersal stages which are dependent on the tidal height for transport and the structural complexity provided by vegetation at settlement. Since fire appears to negatively affect salt marsh gastropod populations within structurally complex Native Rush and Salt Couch, due consideration of the importance of these refuges for gastropods is recommended when fire or other disturbances occur in ecologically endangered salt marsh in the Southern Hemisphere. Managers need to consider spatial heterogeneity of molluscs and their recovery in the event of fire in Southern Hemisphere salt marshes.  相似文献   

14.
The recovery of the peregrine falcon (Falco peregrinus anatum) in California has taken place amid strong geographical differences in habitat quality, potentially creating a sink population in the southern coastal habitat and source populations in the northern interior and urban habitats. We analyzed long-term monitoring data to investigate the mechanisms and consequences of spatial structuring for the recovery of this set of nonstable subpopulations. Dispersal rates between habitats were asymmetric, with extremely limited dispersal out of the interior habitat and a strong tendency for birds in the southern coast to disperse to the urban habitats. We used these dispersal estimates and habitat-specific productivity rates to build a set of regional population models that describe population growth within and dispersal between each subpopulation. We tested for the existence of habitat-specific survival and territory acquisition rates by comparing model projections with the number of breeding pairs censused annually in each subpopulation. Our analyses indicate a high rate of survival for interior birds and suggest that both the interior and urban subpopulations were regulated by territory availability over the study period. The inherent spatial structure of this regional peregrine falcon population has had a considerable influence on its recovery and management.  相似文献   

15.
Yozzo  David J.  Smith  David E. 《Hydrobiologia》1997,362(1-3):9-19
Previous research on intertidal nekton communities has identifiedimportant determinants of community structure and distribution; however, fewstudies have compared nekton utilization of disparate marsh habitats. Inthis study, abundance and distribution patterns of resident nekton werecompared between tidal freshwater marsh and salt marsh surfaces varying inflooding depth and duration. Nekton were collected in pit traps installedalong elevational transects at four marshes in coastal Virginia (twofreshwater, two saline) from April through November 1992–1993. Thedominant fish collected at all sites was the mummichog Fundulusheteroclitus. The daggerblade grass shrimp Palaemonetes pugio was thedominant nekton species collected at salt marsh sites, and was seasonallyabundant on tidal freshwater marshes. A positive correlation betweenflooding depth and nekton abundance was observed on salt marshes; anopposite pattern was observed on tidal freshwater marshes. Tidal floodingregime influences the abundance of resident nekton, however, the effect maybe confounded by other environmental variables, including variation insurface topography and seasonal presence or absence of submerged aquaticvegetation (SAV) in adjacent subtidal areas. In mid-Atlantic tidalfreshwater wetlands, SAV provides a predation refuge and forage site forearly life stages of marsh-dependent nekton, and several species utilizethis environment extensively. Salt marshes in this region generally lackdense SAV in adjacent subtidal creeks. Consequently, between-sitedifferences in species and size-specific marsh surface utilization byresident nekton were observed. Larvae and juveniles represented 79%and 59% of total fish collected at tidal freshwater and salt marshsites, respectively. The resident nekton communities of tidal freshwater andsalt marsh surfaces are characterized by a few ubiquitous species with broadenvironmental tolerances. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Habitat loss, together with less obvious land-use changes such as intensified farming practice, can have significant adverse impacts on biodiversity. An important factor in determining the ability of species to cope with such changes is their potential to sustain a populations network by dispersal across the landscape. Habitat quality and structure are particularly important for surface-dwelling species with low dispersal abilities, such as amphibians. To assess this ecological function, ponds in a coastal and typically rural area of northern France were surveyed for amphibians in 1974, 1992 and 2011. These repeated surveys yielded different outcomes for different species groups. Three rare species persisted in more or less specialized habitat types. Two moderately common species declined, but kept strongholds in coastal dunes and associated marshes. Five common species with broad ecological niches remained equally widespread. The Northern crested newt declined markedly and the Midwife toad declined dramatically, as did their breeding habitats in vegetated ponds and cattle drinking troughs. One species, the Moor frog, may have gone locally extinct. A model of relative resistance to amphibian dispersal was created for different landscape types, on a scale from 0 (low resistance) to 1 (high resistance). This generated values of 0.23 for pasture, 0.72 for arable and 0.98 for urban and transport. As pasture declined in the study area, while arable and urban/transport infrastructure increased, amphibian dispersal became more difficult. However, dispersal paths proved difficult to evaluate in a patchy landscape like the one surveyed, due to a paucity of spatial signal. Pond loss is a more tractable reason for the observed amphibian species decline than is the quality of intervening terrestrial habitat matrix. In 2011, 22 newly created ponds had species richness in line with pre-existing ponds and this will have counteracted a dwindling metapopulation structure, indicating that habitat creation/restoration can play a valuable role in conservation. The colonization of new ponds may also prove more informative for gauging the potential for amphibian dispersal in the landscape than the preceding decline.  相似文献   

17.
As sea levels rise, birds nesting in coastal marshes will be particularly vulnerable to increased tidal inundation. Understanding how marsh birds select their nesting habitat along the elevational gradient of these marshes will provide insight into how these species might be affected by rising sea levels. Clapper Rails (Rallus crepitans) are coastal marsh‐nesting birds whose nests are vulnerable to flooding, but it is not clear if they select for habitat along the elevational gradient or only use other habitat cues. Our objective was to determine if Clapper Rails select higher‐elevation nest sites, while also controlling for selection of other habitat variables at both landscape and territory levels, by comparing nest habitat to habitat in other areas of territories and at random points in the marsh landscape. At the landscape level, Clapper Rails did not exhibit selection for the elevational gradient, with nests and random points at similar elevations. At the territory level, however, nest‐site selection was most influenced by elevation and plant height, with Clapper Rails selecting nest sites with higher elevations and in areas with taller plants. However, the strength of the elevation effect was uncertain, suggesting the importance of precise elevation measurements in the field. Given this selection for higher‐elevation nest sites, Clapper Rails may be somewhat resilient to increased tidal inundation. However, the potential for increased intra‐ and interspecific competition for high‐elevation marshes should make conservation of these habitats a priority.  相似文献   

18.
Several studies have suggested that the fitness of a parasite can be directly impacted by the quality of its host. In such cases, selective pressures could act to funnel parasites towards the highest-quality hosts in a population. The results of this study demonstrate that snail host quality is strongly correlated with spatial patterning in trematode infections and that habitat type is the underlying driver for both of these variables. Two trematodes (Himasthla quissetensis and Zoogonus rubellus) with very different life cycles assume the same spatial infection pattern in populations of the first intermediate host (Ilyanassa obsoleta) in coastal marsh habitats. Infected snails are disproportionately recovered from intertidal panne habitats, which offer more hospitable environs for snails than do adjacent habitats (intertidal creeks, coastal flats, and subtidal creeks), in terms of protection from turbulence and wave action, as well as the availability of food stuffs. Snails in intertidal panne habitats are of higher quality when assessed in terms of average size-specific mass, growth rate, and fecundity. In mark-recapture experiments, snails frequently dispersed into intertidal pannes but were never observed leaving them. In addition, field experiments demonstrate that snails confined to intertidal panne habitats are disproportionately infected by both trematode species, relative to conspecifics confined to adjacent habitats. Laboratory experiments show that infected snails suffer significant energetic losses and consume more than uninfected conspecifics, suggesting that infected snails in intertidal pannes may survive better than in adjacent habitats. We speculate that 1 possible mechanism for the observed patterns is that the life cycles of both trematode species allows them to contact the highest-quality snails in this marsh ecosystem.  相似文献   

19.
The residence time, movements, and growth of tagged young-of-the-year Atlantic croaker, Micropogonias undulatus L., were studied from July to October 1998 as measures of the success of a marsh restoration project adjacent to Delaware Bay. A total of 8173 croaker (41-121 mm SL) were tagged from each of two creeks in both marshes during July and August with internal sequential coded wire microtags. A prior tag-retention study in the laboratory found a 95% tag retention rate. Of those tagged, 3.6% were recaptured within and nearby the study creeks using seines, otter trawls, and weirs during a 105-day period. Recapture percentages ranged from 1.5% to 6.1% in individual creeks in the restored marsh. There was some movement of tagged fish between creeks in the restored marsh and out into the main creek, but 95% of the recaptures were made in the subtidal and intertidal portions of the same creek in which they were tagged. Fewer fish were recaptured at the reference marsh (1.6% recapture; n=1489 tagged) up to 50 days after tagging, with no evidence of movement between creeks. The average individual growth rates for recaptured croaker was the same in both restored (0.69 mm/day) and reference (0.63 mm/day) marshes before egress from the creeks in September and October. As a result, both created creeks in a restored marsh and natural creeks in a reference marsh appeared to be utilized as young-of-the-year habitat in a similar way during the summer and until egress out of the marshes during the fall, thus this restoration effort has been successful in creating suitable habitat for Atlantic croaker.  相似文献   

20.
The tidewater goby, Eucyclogobius newberryi, inhabits discrete, seasonally closed estuaries and lagoons along approximately 1500 km of California coastline. This species is euryhaline but has no explicit marine stage, yet population extirpation and recolonization data suggest tidewater gobies disperse intermittently via the sea. Analyses of mitochondrial control region and cytochrome b sequences demonstrate a deep evolutionary bifurcation in the vicinity of Los Angeles that separates southern California populations from all more northerly populations. Shallower phylogeographic breaks, in the vicinities of Seacliff, Point Buchon, Big Sur, and Point Arena segregate the northerly populations into five groups in three geographic clusters: the Point Conception and Ventura groups between Los Angeles and Point Buchon, a lone Estero Bay group from central California, and San Francisco and Cape Mendocino groups from northern California. The phylogenetic relationships between and patterns of molecular diversity within the six groups are consistent with repeated, and sometimes rapid, northward and southward range expansions out of central California caused by Quaternary climate change. Plio-Pleistocene tectonism, Quaternary coastal geography and hydrography, and historical human activities probably also influenced the modern geographic and genetic structure of E. newberryi. The phylogeography of E. newberryi is concordant with phylogeographic patterns in several other coastal California taxa, suggesting common extrinsic factors have had similar effects on different species. However, there is no evidence of a phylogeographic break coincident with a biogeographic boundary at Point Conception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号